Adriano Leal Bruni

Estatística Aplicada à Gestão Empresarial EXERCÍCIÓS

Respostas

OBSERVAÇÃO IMPORTANTE

O download desta relação de respostas do livro pode ser feito na página do autor <www.infinitaweb.com.br> ou da editora <www.EditoraAtlas.com.br>. O leitor pode salvar o arquivo com as respostas, imprimi-lo e usá-lo durante a solução dos exercícios propostos. Assim, não será necessário ficar folheando rotineiramente o livro na conferência das respostas.

Capítulo 1

- 1. (a) Qualitativa nominal; (b) Quantitativa contínua; (c) Qualitativa nominal; (d) Qualitativa nominal; (e) Qualitativa nominal; (f) Quantitativa discreta; (g) Quantitativa contínua; (h) Qualitativa ordinal.
- 2. (a) rol: {1; 1; 1; 1; 2; 2; 3; 3; 3; 4; 4; 4; 5; 5; 5; 5}

X,	F_{i}	F ;%	FAc _i	FAc _i %
1	5	29,41	5	29,41
2	2	11,76	7	41,18
3	3	17,65	10	58,82
4	3	17,65	13	76,47
5	4	23,53	17	100,00
Soma (Σ)	17	100,00		

(b) rol: {0,0; 0,3; 0,7; 1,1; 2,1; 2,8; 3,0; 3,2; 3,2; 3,2; 3,4; 5,5; 5,8; 7,4; 7,6; 8,5; 10,0}

X,	F,	<i>F</i> ;%	FAc _i	FAc,%
0	1	5,88	1	5,88
0,3	1	5,88	2	11,76
0,7	1	5,88	3	17,65
1,1	1	5,88	4	23,53
2,1	1	5,88	5	29,41
2,8	1	5,88	6	35,29
3	1	5,88	7	41,18

3,2	3	17,65	10	58,82
3,4	1	5,88	11	64,71
5,5	1	5,88	12	70,59
5,8	1	5,88	13	76,47
7,4	1	5,88	14	82,35
7,6	1	5,88	15	88,24
8,5	1	5,88	16	94,12
10	1	5,88	17	100,00
Soma (Σ)	17	100,00		

- 3. (a) 28; b) 140; (c) 12; (d) 25; (e) 114.
- 4. (a) 48; (b) 8; (c) 6; (d) 15 | 21.
- 5. (a) 24; (b) 90; (c) 3,00; (d) 2,95; (e) 3,25 - 2,78/10 = 0,05; (f) 3,25 - 2,75 = 0,5; (g) (2,85 + 2,90) / 2 = 2,875; (h) 10; (i) 2 + 3 + 10 + 11 + 24 + 14 = 64; (j) 3 / 90 = 3,3%.

6.

X _i	F,	<i>F</i> _i %	FAc _i	FAc;%
12	5	10	5	10
16	13	26	18	36
17	16	32	34	68
34	8	16	42	84
45	5	10	47	94
56	3	6	50	100
Soma (Σ)	50	100		

7. (a) 20; (b) 10; (c) 9; (d) 60%; (e) 20%; (f) 15.

8. (a) 1° Encontra-se $k = \sqrt{60} = aprox$. 8. 2° Encontra-se h = (177,67 - 40,00)/8 = 17,2088. 3° Dividem-se as classes, utilizando o menor valor e somando ao valor de h. 4° Preenche-se a tabela, verificando a freqüência dos números em cada classe.

Classe	F _i	F ;%	FAc _i	FAc,%
40,0000 - 57,2088	8	13,33	8	13,33
57,2088 - 74,4176	10	16,67	18	30,00
74,4176 - 91,6264	6	10,00	24	40,00
91,6264 -108,8352	6	10,00	30	50,00
108,8352 - 126,0440	8	13,33	38	63,33
126,0440 - 143,2528	8	13,33	46	76,67
143,2528 - 160,4616	5	8,33	51	85,00
160,4616 - 177,6700	9	15,00	60	100,00
Soma (Σ)	120	100		

(b)

Classe	F,	F _i %	FAc _i	FAc _i %
0 - 50	5	8,33	5	8,33
50 - 100	23	38,33	28	46,67
100 - 150	20	33,33	48	80
150 - 200	12	20	60	100
Soma (Σ)	60	100		

9. (a) 1° Encontra-se $k=\sqrt{49}=7$. 2° Encontrase h=(179,12-135,00) / 7=6,3029. 3° Dividem-se as classes, utilizando o menor valor e somando ao valor de h. 4° Preenche-se a tabela, verificando a freqüência dos números em cada classe.

Classe	F,	F ;%	FAc,	FAc _i %
135,00 - 141,3029	8	16,33	8	16,33
141,3029 - 147,6058	6	12,24	14	28,57
147,6058 - 153,9087	8	16,33	22	44,90
153,9087 - 160,2116	7	14,29	29	59,18
160,2116 - 166,5145	8	16,33	37	75,51
166,5145 - 172,8174	5	10,20	42	85,71
172,8174 - 179,1500	7	14,29	49	100,00
Soma (Σ)	49	100,00	·	

b)

Classe	F,	<i>F</i> _{<i>i</i>} %	FAc _i	FAc;%
130 –150	17	34,69	17	34,69
150 - 170	22	44,90	39	79,59
170 - 190	10	20,41	49	100
Soma (Σ)	49	100		

10. (a) 1° Encontra-se $k = \sqrt{45} = aprox$. 7. 2° Encontra-se h = (27,00 - 1,00)/7 = 3,7143. 3° Dividem-se as classes, utilizando o menor valor e somando ao valor de h. 4° Preenche-se a tabela, verificando a freqüência dos números em cada classe.

Classe	F,	F ;%	FAc,	FAc _i %
1,00 - 4,7143	11	24,44	11	24,44
4,7143 - 8,4286	9	20,00	20	44,44
8,4286 - 12,1429	5	11,11	25	55,56
12,1429 - 15,8572	6	13,33	31	68,89
15,8572 - 19,5715	6	13,33	37	82,22
19,5715 - 23,2858	4	8,89	41	91,11
23,2858 - 27,0000	4	8,89	45	100,00
Soma (Σ)	45	100,00		

b)

Classe	F,	<i>F</i> _i %	FAc _i	FAc _i %
0 – 5	11	24,44	11	24,44
5 - 10	10	22,22	21	46,67
10 - 15	8	17,78	29	64,44
15 - 20	8	17,78	37	82,22
20 - 25	4	8,89	41	91,11
25 - 30	4	8,89	45	100,00
Soma (Σ)	45	100,00		

11. Rol: {10; 20; 30; 30; 30; 40; 50; 50; 60; 70; 70; 70; 70; 70; 80; 80; 110; 120; 120; 130; 130; 140; 140; 180; 190; 190; 200; 200; 210; 220}. Passos: 1° Encontra-se k = $\sqrt{30}$ = aprox. 5. 2° Encontra-se h = (220 - 10)/5 = 42. 3° Dividem-se as classes utilizando o menor valor e somando ao valor de h. 4° Preenche-se a tabela, verificando a freqüência dos números em cada classe.

Classe	F,	<i>F</i> _i %	FAc _i	FAc;%
10 - 52	8	26,67	8	26,67
52 - 94	8	26,67	16	53,34
94 -136	5	16,67	21	70,01
136 - 178	2	6,67	23	76,68
178 - 220	7	23,33	30	100
Soma (Σ)	30	100,00		

12. 1º Encontra-se k = $\sqrt{28}$ = aprox. 5. 2º Encontra-se h = (318,33 – 68,98) / 5 = 49,87. 3º Dividem-se as classes, utilizando o menor valor e somando ao valor de h. 4º Preenche-se a tabela, verificando a freqüência dos números em cada classe.

Classe	F,	F ;%	FAc,	FAc,%
68,98 - 118,85	4	14,29	4	14,29
118,85 - 168,72	6	21,43	10	35,72
168,72 - 218,59	11	39,29	21	75,01
218,59 - 268,46	2	7,14	23	82,15
268,46 - 318,33	5	17,86	28	100
Soma (Σ)	28	100,00		

13. Analisando a tabela de freqüências, pode-se concluir que a maior parte dos salários está entre \$ 795,00 e \$ 933,00 e que 65% das remunerações da empresa são iguais ou superiores a \$ 795,00.

Classe	F,	F ;%	FAc _i	FAc;%
381,00 - 519,00	8	20	8	20
519,00 - 657,00	2	5	10	25
657,00 - 795,00	4	10	14	35
795,00 - 933,00	10	25	24	60
933,00 -1.071,00	7	17,5	31	77,5
1.071,00 - 1.209,00	9	22,5	40	100
Soma (Σ)	40	100,00		

(a) Procedimentos: 1º Encontrar o valor de k
 (√40 = aprox. 6). 2º Encontrar o valor de h
 = (7.222,20 − 1.165,00)/6 = 1.009,533. 3º
 Montar o agrupamento das classes começando do menor valor e acrescentando o valor de h.
 4º Preencher a tabela verificando a freqüência dos números em cada classe.

Classe	F,	F _i %	FAc _i	FAc _i %
1.165,00 - 2.174,533	22	55	22	55
2.174,533 - 3.184,066	6	15	28	70
3.184,066 - 4.193,599	7	17,5	35	87,5
4.193,599 - 5.203,123	0	0	35	87,5
5.203,123 - 6.212,665	2	5	37	92,5
6.212,665 - 7.222,20	3	7,5	40	100
Soma (Σ)	40	100		

(b) Procedimentos: 1° Encontrar o valor de k ($\sqrt{70}$ = aprox 8). 2° Encontrar o valor de h = (7.222,20-820,20)/8=800,25. 3° Montar o agrupamento das classes começando do menor valor e acrescentando o valor de h. 4° Preencher a tabela verificando a freqüência dos números em cada classe.

Classe	F,	F ;%	FAc,	FAc;%
820,20 - 1.620,45	45	64,3	45	64,3
1.620,45 - 2.420,70	8	11,4	53	75,7
2.420,70 - 3.220,95	6	8,6	59	84,3
3.220,95 - 4.021,20	5	7,1	64	91,4
4.021,20 - 4.821,45	1	1,4	65	92,8
4.821,45 - 5.621,70	1	1,4	66	94,2
5.621,70 - 6.421,95	3	4,3	69	98,5
6.421,95 - 7.222,20	1	1,4	70	100
Soma (Σ)	70	100		

(c) <u>Pro</u>cedimentos: 1° Encontrar o valor de k ($\sqrt{120}$ = aprox. 11). 2° Encontrar o valor de h = (7.222,20 – 507,00) / 11 = 610,473. 3° Montar o agrupamento das classes começando do menor valor e acrescentando o valor de h. 4° Preencher a tabela verificando a freqüência dos números em cada classe.

Classe	F _i	F _i %	FAc _i	FAc _i %
507,00 - 1.117,473	78	65	78	65
1.117,473 - 1.727,946	17	14,2	95	79,2
1.727,946 - 2.338,419	7	5,8	102	85
2.338,419 - 2.948,892	6	5	108	90
2.948,892 - 3.559,365	5	4,2	113	94,2
3.559,365 - 4.169,838	2	1,7	115	95,9
4.169,838 - 4.780,311	0	0	115	95,9
4.780,311 - 5.390,184	1	0,8	116	96,7
5.390,784 - 6.001,257	1	0,8	117	97,5
6.001,257 - 6.611,730	2	1,7	119	99,2
6.611,730 - 7.222,20	1	0,8	120	100
Soma (Σ)	120	100		

Capítulo 2

1.

3,6

4,1289

5,1355789

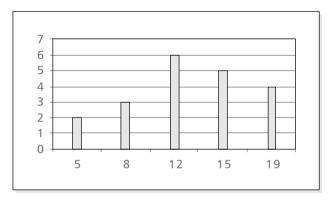
6,126

7,67

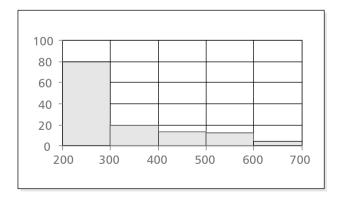
8,1

9,4

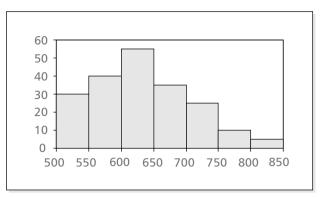
2.

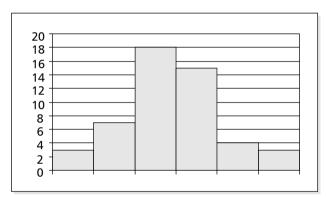

1,667888899

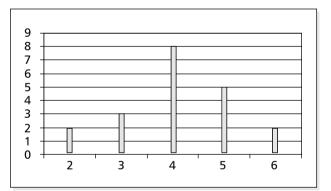
 $2,\!011122222233333333344444$

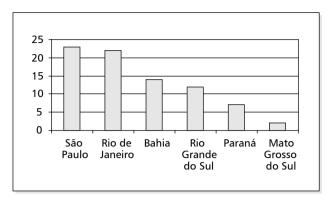

2,5557788899

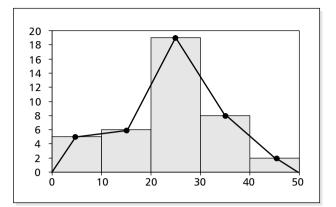
3,00112234

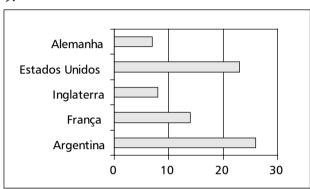

3.


4. A grande maioria dos salários desta empresa está entre a faixa de R\$ 200,00 e R\$ 300,00.

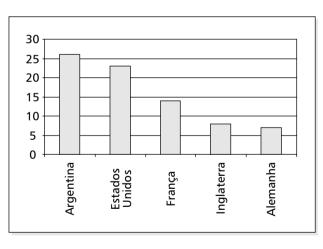

5.


6.

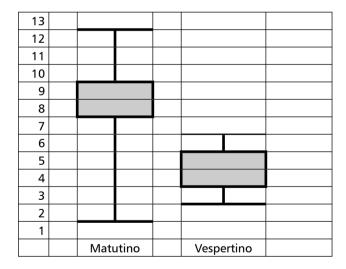

7.


8.

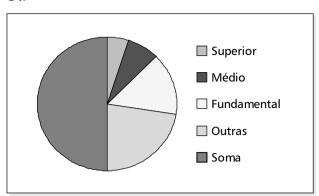
11.


9.

riável quantitativa renda *versus* sexo. Nota-se que os indivíduos de sexo masculino apresentam uma renda mediana menor, porém com uma dispersão muito maior; (b) o gráfico analisa o comportamento da variável quantitativa preço *versus* versão. Nota-se que as versões têm preços medianos aproximadamente iguais. A versão *hatch* apresenta uma dispersão maior, embora a versão sedan apresente um valor extremo ou *outlier*, identificado como 13.


(a) o gráfico analisa o comportamento da va-

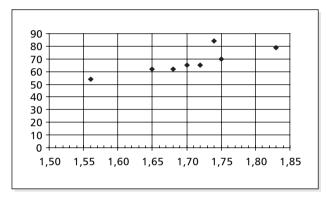
10.



13.

12.

14.



17. Histograma e Diagrama de Freqüências

•

1970 1975 1980

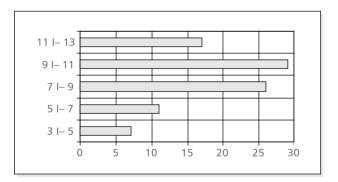
40 30 20 10 0 3 5 7 9 11 13

1985 1990

1995 2000

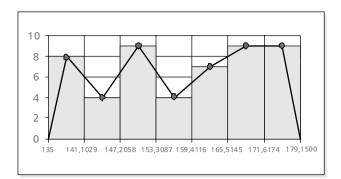
16. (a) aparentemente, existe uma relação negativa entre quilometragem (x) e preço (y). Quanto maior a quilometragem (x), menor o preço (y).

Diagrama de Barras

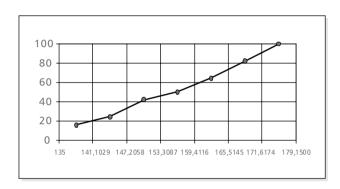

70.000 60.000

50.000 40.000

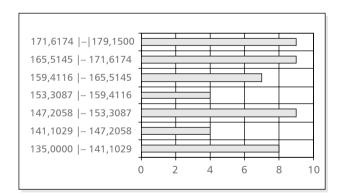
30.000


20.000

10.000



(b) aparentemente, existe uma relação positiva entre ano do modelo (x) e preço (y). Quanto maior o ano do modelo (x), maior o preço (y).


18. Histograma e Diagrama de Freqüências

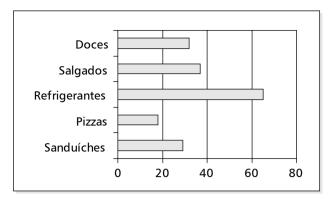

Ogiva de Galton

Diagrama de Barras

19.

Capítulo 3

- 1. 5,5
- 2. 1.425 picolés
- 3. 6,1
- 4. 18.750
- 5. (a) a resposta óbvia envolveria a aplicação pura e simples da fórmula da média, o que resultaria no valor igual a \$ 1.050,00. Porém, nota-se, claramente, a existência de um valor extremo (\$ 4.200,00), assim, um cálculo mais cuidadoso da média não deveria incluir este valor. A nova média calculada seria igual a \$ 262,50; (b) o salário igual a \$ 330,00 pode ser considerado alto, por ser maior do que a média sem o valor extremo (\$ 262,50).
- 6. \$ 800,00.
- 7. 14,50.
- 8. 6,7778, o aluno foi reprovado.
- 9. 9,2.
- 10. 6,15.
- 11. \$ 53,00.
- 12. 6.
- 13. 5,7.
- 14. As médias ponderadas para as duas cidades foram iguais a 5,65 e 7,10 para São Paulo e Rio de Janeiro respectivamente. Logo, a cidade do Rio de Janeiro deveria ser escolhida.
- 15. O peso deveria ser no mínimo igual a 3.
- 16. 17.
- 17. 20,25 anos.
- 18. 5,87.
- 19. 3,7922.

- 20. \$ 31,4589.
- 21. 1,5136.
- 22. A velocidade média é igual a 53,33 km/h.
- 23. Aritmética = 7,8; geométrica = 6,9994; harmônica = 6,3733.
- 24. Geométrica = 4,1602; harmônica = 4,0000.
- 25. (a) Geométrica = 4; harmônica = 3,429; (b) Geométrica = 3,663; harmônica = 3,333.
- 26. Mediana = 9.
- 27. 6.
- 28. 50,50.
- 29. Média = 2.270,00 e mediana = 950,00. O valor extremo \$ 8.000,00 distorce o cálculo da média. Um procedimento mais correto envolveria a sua eliminação da análise e o novo cálculo da média.
- 30. 27,43, aproximadamente.
- 31. 5 e 9 (bimodal).
- 32. É uma série bimodal apresentando como modas os números 3 e 7.
- 33. Junho: média = 8,4286; mediana = 8 moda = 12 Julho: média = 41,1667; mediana = 49,50; moda = 60 e 14 (a série é bimodal).
- 34. Média = 6,3333; moda = 2 e 8 (bimodal); mediana = 7.
- 35. Sem perda de informação: (a) 513,5556; (b) 512,0000; (c) 508,0000 e 511,0000 (bimodal).
- 36. Média = 513,5000; mediana = 511,7273; moda = classe 509 | 515.
- 37. Média = 7,76; moda (classe modal) = 2,0 4,4; mediana = 8,0.
- 38. Média = 15,75; moda = 15; mediana = 15.
- 39. Moda = 83; média = 86; mediana = 86,50.
- 40. Moda = 17; média = 21,65; mediana = 21.
- 41. Média = 1,74 m, moda = 1,70 m e mediana = 1,75 m.
- 42. (a) 3,75 e 3,5; (b) 8,3333 e 8; (c) 15 e 15.
- 43. (a) as idades médias de A e B são respectivamente iguais a 16,6363 e 17,5454. Logo, o time de maior média de idade é o time B; (b) time A: 16 anos; time B: 17, 18 e 19 anos; (c) medianas iguais a 16 e 18 para os times A e B, respectivamente.
- 44. Média: 1,6723, moda: 1,4766 | 1,6049 (classe modal). Mediana: 1,6416.

- 45. Média igual a 7, moda igual a 5 e mediana igual a 6,5.
- 46. Média = 75.000; moda (classe modal) = 70000 |-80000; mediana = 75.000.

47.

Classe	F,	F _i %	FAc _i	FAc,%
3	1	6,67	1	6,67
4	2	13,33	3	20
5	7	46,67	10	66,67
6	4	26,67	14	93,34
7	1	6,67	15	100
Σ	15	100		

$$\bar{x} = (3 \times 1 + 4 \times 2 + 5 \times 7 + 6 \times 4 + 7 \times 1) / 15 = 5,1333$$
; moda: classe 5; mediana: 5.

- 48. Média para dados agrupados em classe é igual a 23,1495. Para dados brutos é igual a 23,0256.
- 49. (a) Média: 15,1786, mediana: 15,1429, moda: (classe modal): 14 |- 16; (b) média = 0,6813, moda (classe modal) = 0,65 |- 0,70.
- 50. Média aritmética simples = 5,25; média ponderada = 4,75.
- 51. Ma = 4,375; Mg = 4,072; Mh = 3,7626.
- 52. Rol = 1; 3; 4; 5; 6; 7; 9; 10; 11; 11; 12; 17; média = 8; mediana = 8; moda = 11.
- 53. Média = 3,2; mediana = 3; moda = 3.
- 54. 9,75.

Capítulo 4

- 1. (a) 9; (b) 2; (c) 6,67; (d) 2,58.
- 2. 1,50.
- 3. 0,44 e 0,6633.
- 4. 3500/14000 = 0.25.
- 5. (a) amplitude = 5, média = 8,3750, desvio médio absoluto = 1,7188; (b) variância = 32,1249, desvio padrão = 5,6679; (c) 0,6768
- 6. Média = 992,75; (a) 1004/20 = 50,2; (b) 70223,75/20 = 3511,1875; (c) $\sqrt{\frac{70223,75}{20}}$ = 59,2553; (d) 59,2553/992,75 = 0,0597.
- 7. (a) 15; (b) 4; (c) 27,6667; (d) 5,2599.

- 8. A média é igual a 10, o desvio médio absoluto é igual a 4,20, a variância populacional é igual a 23,20, a variância amostral é igual a 24,42, o desvio padrão populacional é igual a 4,82 e amostral é igual a 4,94.
- 9. (a) 9; (b) 3; (c) 14,7692 e 14,4000; (d) 3,8431 e 3,7947.
- 10. Média = 23,1522. (a) 4,707; (b) 33,2703; (c) 5,7680, (d) 0,2491.
- I) média = 213,7222, (a) 7,8827; (b) 92,3117;
 (c) 9,6079; (d) 0,0450, II) média = 214,5000;
 (a) 8,0556; (b) 90,7500; (c) 9,5263; (d) 0,0444. As diferenças podem ser explicadas pela perda parcial de informação decorrente do agrupamento dos dados.
- 12. (a) 7,50; (b) 2,4495.
- 13. (a) 12,60; (b) moda: classe 11|- 15; (c) 12,6471; (d) 3,34; (e) 19,8400; (f) 4,4542.

14.

	Idade	Renda	Despesa Média
a) Média Aritmética	40,86	1.658,57	67,14
b) Média Geométrica	37,9176663	838,8007	64,54222
c) Média Harmônica	35,4190341	632,9648	61,91646
d) Mediana	31	650	60
e) Moda	49	650	60
f) Intervalo	52	7.650	50
g) Desvio Médio Absoluto	14,122449	1811,837	16,73469
h) Variância Amostral	316,47619	7847248	390,4762
i) Variância Populacional	271,265306	6726212	334,6939
j) Desvio Padrão Amostral	17,7897777	2801,294	19,76047
k) Desvio Padrão Populacional	16,4701338	2593,494	18,29464

- 15. Média = 32; dma = 8,4; $var_p = 131$; desvpad_p = 11,4455; $var_a = 134,3590$; desvpad_a = 11,5913.
- 16. Média = 4,4444; mediana = 4; moda = 1 e 4; desvio padrão = 2,7912; variância = 7,7908; intervalo = 9; desvio médio absoluto = 2,3210.
- 17. Seria mais fácil fazer previsões sobre a série A, que apresenta menor dispersão.

Estatística	Série A	Série B
Média	4,531	9,209
Mediana	4,34	8,025
Amplitude	2,82	20,28
DMA	0,905	5,4988
Variância	1,1371	47,7166
Desvio padrão	1,0663	6,9077

18. É necessário apresentar outras medidas de posição central além da média, já que esta é afetada por valores extremos.

Capítulo 5

1. **2004**: (a) 38; (b) 36,875; (c) amodal; (d) Q_3 $= x_{\left[\frac{3\times8}{4} + \frac{1}{2}\right]} = x_{6,5} = 39 + 58/2 = 48,50; \text{ (e) } D_7$ $= x_{\left[\frac{7\times8}{10} + \frac{1}{2}\right]} = x_{6,1} = 46,5; \text{ (f) } P_{52} = x_{\left[\frac{52\times8}{100} + \frac{1}{2}\right]} = x_{4.66} = 38,32.$

2005: (a) 29; (b) 29,4545; (c) 22; (d)
$$Q_3 = x_{\left[\frac{3\times11}{4} + \frac{1}{2}\right]} = x_{8,75} = 35,75$$
; (e) $D_7 = x_{\left[\frac{7\times11}{10} + \frac{1}{2}\right]} = x_{8,2} = 35,20$; (f) $P_{52} = x_{\left[\frac{52\times11}{100} + \frac{1}{2}\right]} = x_{6,55} = 30,10$.

2.
$$Q_{1} = x_{\left[\frac{1\times18}{4} + \frac{1}{2}\right]} = x_{5} = 163; Q_{2} = x_{\left[\frac{2\times18}{4} + \frac{1}{2}\right]} = x_{9,5}$$
$$= 182,5; Q_{3} = x_{\left[\frac{3\times18}{4} + \frac{1}{2}\right]} = x_{14} = 196.$$

3.
$$Q_{1} = x_{\left[\frac{1\times25}{4} + \frac{1}{2}\right]} = x_{6,75} = 15 Q_{2} = x_{\left[\frac{2\times25}{4} + \frac{1}{2}\right]} = x_{13} = 27; Q_{3} = x_{\left[\frac{3\times25}{4} + \frac{1}{2}\right]} = x_{19,25} = 36,25.$$

4. a)
$$Q_1 = x_{\left[\frac{1\times72}{4} + \frac{1}{2}\right]} = x_{18,5} = 0,645; Q_2 = x_{\left[\frac{2\times72}{4} + \frac{1}{2}\right]}$$

= $x_{36,5} = 1,54; Q3 = x_{\left[\frac{3\times72}{4} + \frac{1}{2}\right]} = x_{54,5} = 3,46$

b)
$$D_2 = x_{\left[\frac{2\times72}{10} + \frac{1}{2}\right]} = x_{14,9} = 0,538; D_7 = x_{\left[\frac{7\times72}{10} + \frac{1}{2}\right]} = x_{50,9} = 2,845; D_9 = x_{\left[\frac{9\times72}{10} + \frac{1}{2}\right]} = x_{65,3} = 11.797$$

c)
$$P_{14} = x_{\left[\frac{14 \times 72}{100} + \frac{1}{2}\right]} = x_{10,58} = 0,4858; P_{48} = x_{\left[\frac{14 \times 72}{100} + \frac{1}{2}\right]} = x_{35,06} = 1,5106; P_{83} = x_{\left[\frac{83 \times 72}{100} + \frac{1}{2}\right]} = x_{60,26} = 5,326.$$

- 5. quartis: 155,50 175,00 186,50 decis: 149,00 154,00 157,50 166,00 175,00 179,50 184,00 189,00 195,00.
- 6. $Q_1 = 9,25, Q_3 = 15,75, P_{10} = 1, P_{90} = 18 \text{ e K} = \frac{15,75 9,25}{2(18 1)} = 0,1912 \text{ (platicúrtica)}.$
- 7. (a) Média = 12, moda inexistente (amodal), mediana = 5, Q_1 = 2,25, Q_2 = 5, Q_3 = 21,50, $AS = \frac{2,25+21,5-2(5)}{21,5-2,25} = 0,7143$. Como AS > 0 e média maior que moda, a distribuição é caracterizada por assimetria à direita; (b) Média = 12, moda inexistente (amodal), mediana = 14, Q_1 = 9,25, Q_2 = 14, Q_3 = 15,75, $AS = \frac{9,25+15,75-2(14)}{15,75-9,25} = -0,4615$. Como AS < 0 e média menor que moda, a distribuição é caracterizada por assimetria à esquerda.
- 8. $Q_1 = 5, Q_2 = 7, Q_3 = 13,25, AS = \frac{5+13,25-2(7)}{13,25-5}$ $= 0,5151 \text{ (à direita)}, P_{90} = 19, P_{10} = 3,40 \text{ e}$ $K = \frac{13,25-5}{2(19-3,4)} = 0,2644 \text{ (leptocúrtica)}.$
- 9. Assim, $1 = \frac{57,1429 23}{26,3028} = 1,2981 \text{ e } Q_1 = 28,5; Q_3 = 80,25; P_{90} = 91,4; P_{10} = 23; k = \frac{80,25 28,5}{2(91,4 23)} = 0,3783.$
- 10. $Q_1 = 135$; $Q_2 = 156$; $Q_3 = 194$; $P_{90} = 303.9$; $P_{10} = 120.3$.

Assim,
$$1 = \frac{184,9375 - 156}{88,1203} = 0,3284$$
; assim,
 $2 = \frac{135 + 194 - 2(156)}{194 - 135} = 0,2881$; curtose = $\frac{194 - 135}{2(303,9 - 120,3)} = 0,1607$.

11. A figura apresenta uma distribuição assimétrica positiva à direita. Indica que muitos candidatos apresentam baixa idade e poucos candidatos apresentam idades mais altas.

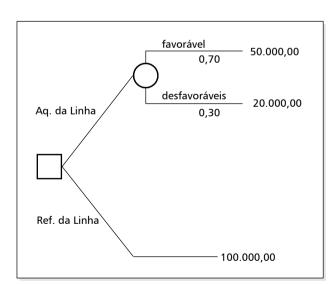
Capítulo 6

- 1. {1; 2; 3; 4; 5; 6}; a) 1/6; b) 5/6.
- 2. Espaço amostral = {Ouros A; 2; 3; 4; 5; 6; 7; 8; 9; 10; J; Q; K

 Copas A; 2; 3; 4; 5; 6; 7; 8; 9; 10; J; Q; K

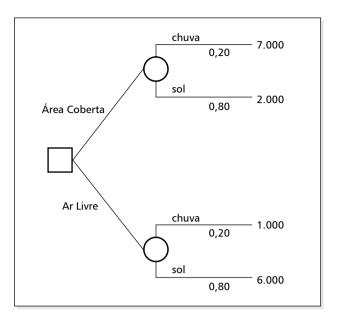
 Espadas A; 2; 3; 4; 5; 6; 7; 8; 9; 10; J; Q; K

 Paus A; 2; 3; 4; 5; 6; 7; 8; 9; 10; J; Q; K}
 - (a) 13/52; (b) 4/52; (c) 1/52
- 3. (a) {1c; 2c; 3c; 4c; 5c; 6c; 1k; 2k; 3k; 4k; 5k; 6k}; (b) i) {2k; 4k; 6k} ii) {1c; 3c; 5c} iii) {3c; 6c; 3k; 6k}; (c) i) 3/12 ii) 3/12 iii) 4/12.
- 4. (a) 180/1800 = 10%; (b) (560 340)/560 = 220/560.
- 5. (a) 0,60; (b) 0,40.
- 6. (a) 6/8; (b) 3/8.
- 7. (a) $S = \{5, 15, 25\}$, $P(A \cap B) = 3/30$; (b) $\{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29\}$, $P(A \cup B) = 15/30$; (c) $S = \{10, 20, 30\}$, $P(A \cap B^c) = 3/30$.
- 8. 4/52.
- 9. 5/6.
- 10. 0%. Esta carta não existe.
- 11. (a) 5/9; (b) 2/3; (c) 2/9.
- 12. 1/9.
- 13. (a) $\frac{1}{2}$; (b) $\frac{1}{2}$.
- 14. (a) 2/52; (b) 28/52; (c) 39/52; (d) 39/52.
- 15. (a) 1/2704; (b) 17/18.
- 16. (a) 6/20; (b) 2/20; (c) 8/20; (d) 12/20.
- 17. (a) 4/100; (b) 4/90.
- 18. (a) 0,80; (b) 0,70.
- 19. (a) 0,1250; (b) 0,8750.
- 20. (a) 45,56%; (b) 12,22%; (c) 42,22%.
- 21. 6/56.
- 22. (a) {kk; kc; ck; cc}; (b) 6/16; (c) 6/16; (d) 10/16; (e) 15/16.
- 23. (a) Não, já que P(A) + P(B) é diferente de 100%; (b) 0,49; (c) 0,98; (d) 0,02
- 24. 0,0000075.
- 25. 0,3699.
- 26. (a) 0,492; (b) 0,072.
- 27. 22,5%.
- 28. 22,22%.
- 29. 1/676.

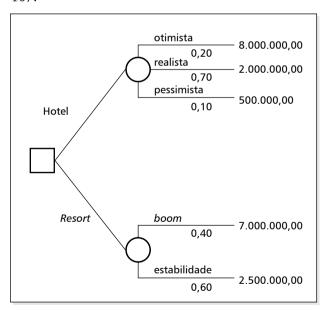

- 30. (a) P(H e ADM) = $\frac{45}{200}$; (b) P(M e PSIC) = $\frac{3}{200}$; (c) P(H e PSIC) = $\frac{29}{200}$.
- 31. (a) 0,5525; (b) 0,4475.
- 32. 86%.
- 33. (a) 6,4%; (b) 57,81%; (c) 4,29%; (d) 27,46%.
- 34. 40%.
- 35. (a) 80%; (b) 68%; (c) 24%; (d) 75%.
- 36. (a) 0,21%; (b) 0,21%; (c) 90,2%.
- 37. 12/33150.
- 38. (a) 15/24; (b) 5/24.
- 39. 1/12.
- 40. (a) 11/58; (b) 24/58; (c) 13/58; (d) 27/58.
- 41. (a) 44/82; (b) 26/82; (c) 0/82; (d) 44/82.
- 42. (a) não, já que P(AUB) é diferente de 1; (b) não, já que P (A e B) é diferente de zero; (c) 13/100 (d) 5/100.
- 43. (a) não, já que P(A ou B) é diferente de 100%; (b) não, já que P (A e B) é igual a 4/10, diferente, portanto, de 0; (c) 40%; (d) 90%.
- 44. (a) 30/350; (b) 320/350; (c) 140/350.
- 45. (a) 27/97; (b) 14/97; (c) 10/97; (d) 12/97.
- 46. (a) 5/61; (b) 29/61; (c) 26/61.
- 47. (a) 0,25; (b) 0,15; (c) 0,50; (d) 0,575.
- 48. (a) 25/101; (b) 29/101; (c) 36/101; (d) 27/101; (e) 35/101.
- 49. (a) 26/118; (b) 43/118; (c) 35/118; (d) 29/118.
- 50. 1.320.
- 51. 306.
- 52. (a) 479.001.600; (b) 21.772.800; (c) 518.400
- 53. (a) 4.320; (b) 864.
- 54. 60.
- 55. 720.
- 56. 3/28.
- 57. 14.400.
- 58. 1.365.
- 59. 220.
- 60. 1.260.
- 61. 1/35.

- 62. 1/180.
- 63. 5.040
- 64. (a) 30; (b) 15
- 65. 120.
- 66. (a) 70; (b) 1680.
- 67. (a) 3.003; (b) 1.176; (c) 980; (d) 280; (e) 490.
- 68. 1/3.420.
- 69. 127.
- 70. (a) 60; (b) 210; (c) 1.287; (d) 56.
- 71. 31.
- 72. (a) 12; (b) 144.
- 73. (a) 4.032; (b) 39.600; (c) 7.920; (d) 7.920; (e) 2.880.
- 74. (a) 158.184.000; (b) 78.624.000; c) 175.760.000.
- 75. 20.
- 76. (a) 60; (b) 36; (c) 12; (d) 24; (e) 36.
- 77. (a) 3.628.800; (b) 1.209.600; (c) 483.840; (d) 967.680.
- 78. 7/924.
- 79. (a) $C_{50,20} / C_{100,50;}$ (b) $(2xC_{50,20} + C_{50,19} + C_{50,18} + C_{50,17} + C_{50,16}) / (C_{100,50})$.
- 80. (a) 504; (b) 80.
- 81. (a) 30%; (b) 25%; (c) 15%.
- 82. (a) 22%; (b) 18,18%.
- 83. (a) 0,89; (b) 0,0899.
- 84. (a) 50%; (b) 40%.
- 85. (a) 90%; (b) 15%.
- 86. 70%.
- 87. 40%.
- 88. 10%.
- 89. (a) 0,7292; (b) 0,4800.
- 90. (a) 20/47; (b) 20/36; (c) 34/61.
- 91. (a) 0,0960; (b) 0,1277.
- 92. Interseção igual a 40. Eventos dependentes, já que a probabilidade depende do número de funcionários que fizeram o treinamento em segurança no trabalho: o universo foi reduzido pela situação condicional.
- 93. (a) 0,0640; (b) 0,2160; (c) 0,40.
- 94. (a) 1/18; (b) 3/6 = 1/2 (são independentes).
- 95. (a) 42,86%; (b) 36,21%; (c) 55,75%.

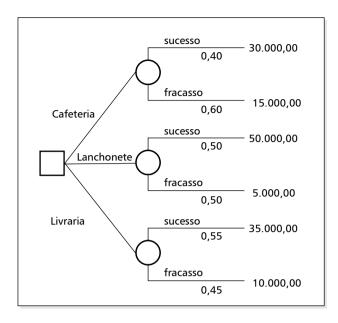
96. (a) E(Jogo) = \$ 125.000,00 > \$ 100.000,00 => o jogo é melhor; (b) E(Jogo) = \$ 9,00 > \$ 0,00 => o jogo é melhor.


- 97. (a) $1/1.200 \times 18.000 = $15,00$.
- 98. (a) $(5/20 \times 1) + (5/20 \times 3) + (5/20 \times 5) =$ \$ 3,50; (b) E(x) = $(5/20 \times 1) + (5/20 \times 3) +$ $(5/20 \times 5) - 4 = -$ \$ 0,50 => a expectativa seria negativa; logo, não valeria a pena.
- 99. (a) $0.5 \times 20.000 = 10.000,00$; (b) 0.65×20.000 = 13.000,00 e $0.35 \times 20.000 = 7.000,00$; (c) $0.85 \times 20.000 = 17.000,00$ e $0.15 \times 20.000 = 3.000,00$.
- 100. (a) $(0.50 \times 400.000) + (0.5 \times 150.000) = 275.000,00$; (b) $(0.75 \times 400.000) + (0.25 \times 150.000) = 337.500,00$.
- 101. As probabilidades associadas às fichas são respectivamente iguais a 0,50; 0,25; 0,10; 0,10 e 0,05. Ponderando os resultados pelas probabilidades, é possível obter o valor esperado: $E(X) = 1 \times 0,5 + 2 \times 0,25 + 5 \times 0,1 + 10 \times 0,1 + 50 \times 0,05 = 5,00.$
- 102. 40,95.
- 103. 12,50%.
- 104. (a) $1/C_{48,6} = 8,1490 \times 10^{-8}$; (b) $1/C_{48,6} \times 32.000.000 = 2,6077$; (c) seriam justos, já que $C_{7,6} = 7$; $C_{8,6} = 28$; $C_{9,6} = 84$; $C_{10,6} = 210$.

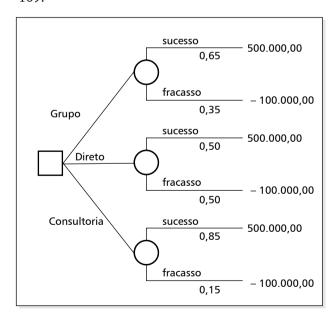
105.


E(Reforma) = \$50.000,00 e E(Aquisição) = $(0,3 \times -20.000) + (0,7 \times 100.000)$ = \$64.000,00. Logo, pelo conceito de valor esperado seria melhor comprar uma linha nova.

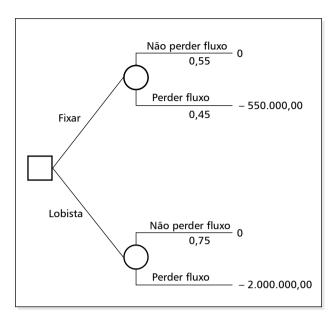
106.


E(ar livre) = $(0.2 \times 1.00) + (0.8 \times 6.000)$ - 2.000 = \$3.000,00 e E(coberto) = $(0.2 \times 7.000) + (0.8 \times 2.000) - 3.000 = 0.00 . A melhor opção seria realizar o evento ao ar livre.

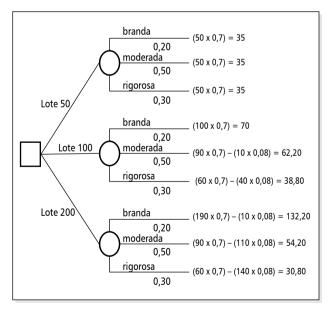
107.


E(hotel) = $(0.2 \times 8.000.000) + (0.7 \times 2.000.000) + (0.1 \times 500.000) - 1.000.000 = 2.05$ milhões e E(resort) = $(0.4 \times 7.000.000) + (0.6 \times 2.500.000) - 1.500.000 = 2.80$ milhões. O maior valor esperado seria do resort.

108.


E(Cafeteria) = $(0.4 \times 30.000) + (0.6 \times 15.000) - 20.000 = 1.000,00$; E(Lanchonete) = $(0.5 \times 50.000) + (0.5 \times 5.000) - 20.000$ = 7.500,00; E(Livraria) = $(0.55 \times 35.000) + (0.45 \times 10.000) - 20.000 = 3.750,00$.

109.


E(Reunir grupo) = $(0.65 \times 500.000) + (0.35 \times -100.000) - 50.000) = $240.000,00$; E(Lançar direto) = $(0.5 \times 500.000) + (0.5 \times -100.000) = $200.000,00$; E(Consultoria) = $(0.85 \times 500.000) + (0.15 \times -100.000) - 100.000 = $310.000,00$, logo, a melhor alternativa (maior valor esperado) seria contratar a consultoria.

110.

E(Fixar Preços Agressivos) = $(0.45 \times -550.000) - 1.300.000 = (1.5475)$ milhão; E(lobista) = $(0.25 \times -2.000.000) -800.000$ = (1.3) milhão. A melhor opção envolveria a contração do lobista.

111.

Os resultados são obtidos mediante a multiplicação da quantidade vendida vezes o lucro vezes a probabilidade. Quando ocorre o caso de haver unidades não vendidas, subtrai-se essa

- quantidade não vendida vezes o valor de 8 centavos (custo preço de repasse). E(lote = 50) = $0.2 \times 35 + 0.5 \times 35 + 0.3 \times 35 20 = $15,00$, E(lote = 100) = $0.2 \times 70 + 0.5 \times 62.2 + 0.3 \times 38.8 20 = $36,74 e E(lote = <math>200$) = $0.2 \times 132.2 + 0.5 \times 54.2 + 0.3 \times 30.8 20 = $42,78$. Logo, a melhor opção envolveria a compra de um lote com 200 unidades.
- 112. (a) se não podem ser operados simultaneamente, a corrente deve "escolher" entre os caminhos C1, C3 e C4 ou C2, C3 e C4. Como as probabilidades de C1 e C2 funcionarem são iguais, pode-se igualar: $P(C1) \times P(C3) \times P(C4)$ = $P(C2) \times P(C3) \times P(C4) = 0,65$. Substituindo os valores, tem-se que $P(C3) = 0.45 / (0.80 \times$ 0.70) = 0.8036 = 80.36%; (b) Já que os circuitos podem operar de forma independente, a corrente pode fazer o percurso A – B se apenas C1 funcionar, ou se apenas C2 funcionar ou se C1 e C2 funcionarem. A única forma de não passar a corrente seria C1 e C2 não funcionarem. Aplicando o teorema do complemento: $[1 - P(C1)^{c}.P(C2)^{c}].P(C3).P(C4) = 0.45.$ Assim, P(C3) = 0.6696 = 66.96%.
- 113. (a) (0.2×0.3) ; + (0.35×0.2) + (0.45×0.5) = 35,50%; (b) 100%; (c) 1 (0.35×0.5) + (0.45×0.2) + (0.45×0.5) = 51%.
- 114. (a) 0,7; (b) 0,25; (c) 0,75; (d) 0,88; (e) 0,175; (f) 0,5070.
- 115. (a) 0,64; (b) 0,04; (c) 0,96.
- 116. (a) 42/60; (b) 74/100; (c) 18/26.
- 117. (a) 5/30; (b) 7/30; (c) 10/30.
- 118. Os valores esperados são iguais a \$ 1,89 (para soma 9) e 1,67 (para faces iguais a 4). É melhor apostar na soma igual a 9.

Capítulo 7

Distribuição binomial

- 1. 34,72%.
- 2. (a) 6,25%; (b) 25%; (c) 37,5%; (d) 25%; (e) 6,25%; (f) 100%.
- 3. (a) 8,03%; (b) 99,99%; (c) 89,84%.
- 4. (a) 29,66%; (b) 17,80%.
- 5. (a) 80,73%; (b) 28,83%.
- 6. (a) 93,75%; (b) 68,75%; (c) 31,25%.
- 7. (a) 39,55%; (b) 0,10%; (c) 8,79%; (d) 36,72%; (e) 76,27%.

- 8. (a) 32,81%; (b) 0,81%; (c) 0,051%; (d) 40,95%; (e) 7,29%.
- 9. (a) 62,64%; (b) 37,36%; (c) aproximadamente 0%.
- 10. (a) 18,69%; (b) aproximadamente zero; (c) 2,89%.
- 11. (a) 1,97%; (b) 37,70%.
- 12. (a) aproximadamente 100%; (b) 34,87%.
- 13. (a) 59,97%; (b) 6,69%; (c) 40,03%; (d) 92,68%.
- 14. $1 (5/6)^n$.
- 15. 0,20%.
- 16. (a) 0,07%; (b) 4,86%; (c) 99,40%.
- 17. (a) 1,94%; (b) 17,77%.
- 18. (a) 38,95%; (b) 16,51%; (c) 99,81%; (d) 61,05%; (e) 80,37%.
- 19. (a) 6,56%; (b) 34,42%; (c) 23,76%.
- 20. (a) 23,04%; (b) 92,22%; (c) 31,74%.
- 21. (a) 14,06%, (b) 42,19%.
- 22. (a) 37,59%; (b) 17,46%; (c) aproximadamente 100%.
- 23. (a) 13,29%; (b) 99,61%; (c) aproximadamente 100%.
- 24. (a) 66,34% (b) aproximadamente zero; (c) aproximadamente 100%; (d) aproximadamente zero.
- 25. (a) 0,95%; (b) 6,67%; (c) 30,65%.
- 26. (a) 8,79%; (b) 0,02%; (c) 3,90%.
- 27. (a) 20,73%; (b) 99,86%; (c) 12,57%; (d) 87,43%.
- 28. (a) 33,30%; (b) 85,22%; (c) 14,78%.
- 29. (a) 0,02%; (b) 96,10%; (c) 1,97%.
- 30. (a) 0,06%; (b) 0, aproximadamente; (c) 99,94%.
- 31. (a) 13,23%; (b) 83,19%; (c) 16,81%.
- 32. Acertar na loteria esportiva = $(1/3)^{13}$ = 1/1.594.323 = 0,000000627; acertar na megasena = C6,4 / C60,6 = 15 / 50.063.860 = 1 / 3.337.591. É mais fácil ganhar na loteria esportiva.
- 33. (a) 0,000000627; (b) 0,994861769; (c) 0,000016935
- 34. (a) aproximadamente 5 borderôs; (b) aproximadamente 1 borderô.
- 35. (a) aproximadamente 48 famílias; (b) aproximadamente 190 famílias.
- 36. (a) 75; (b) 225; (c) 525; (d) 75.

Distribuição de Poisson

- 1. (a) 22,40%; (b) 80,09%; (c) 4,98%.
- 2. (a) 99,88%; (b) 10,24%.
- 3. (a) 8,42%; (b) 26,57%.
- 4. (a) 18,53%; (b) 21,44%.
- 5. (a) 14,65%; (b) 90,84%; (c) 43,35%.
- 6. (a) 2 chamadas; (b) 13,53%; (c) 59,40%.
- 7. (a) 77,69%; (b) 25,10%.
- 8. (a) 19,54%; (b) 23,81%; (c) 56,65%.
- 9. 1,38%.
- 10. (a) 8,88%; (b) 8,46%; (c) 8.44%.
- 11. 0,42%.
- 12. 13,59%.
- 13. 9,39%.
- 14. 0,67%.
- 15. 7,33%.
- 16. 8,03%.
- 17. 6,61%.
- 18. (a) 1,83%; (b) 7,33%; (c) 14,65%; (d) 90,84%.
- 19. (a) 96,08%; (b) 0,08%.
- 20. (a) 14,65%; (b) 19,54%; (c) 43,35%.
- 21. (a) 17,38%; (b) 0,8992%; (c) 6,79%.
- 22. 19,54%.
- 23. 1,41%.
- 24. (a) 0,1680; (b) 0,4232.
- 25. (a) 0,15%; (b) 99,85%; (c) 98,87%; (c) 0 (impossível!).
- 26. (a) 16,65%; (b) 53,05%; (c) 91,76%.
- 27. 8,03%.
- 28. (a) 9,16%; (b) 82,64%.
- 29. (a) 40,66%; (b) 93,71%; (c) 93,71%; (d) 0,23%.
- 30. (a) 44,93%; (b) 14,38%.
- 31. (a) 22,40%; (b) 22,40%; (c) 64,72%;

Process Black

- 32. 32,33%.
- 33. (a) 48; (b) 6,9282.
- 34. 0,0038%.
- 35. (a) 13,96%; (b) 80,88%.
- 36. (a) 13%; (b) 39,75%.
- 37. 18,39%.
- 38. (a) 8; (b) 19,1%; (c) 90%.

- 39. (a) 13,39%; (b) 93,80%.
- 40. 44,05%.
- 41. (a) 19,54%; (b) 76,19%.
- 42. (a) 1,27%; (b) 65,28%.
- 43. 87,53%.

Distribuição normal

- 1. (a) 2,5 e –1,88; (b) 71 e 87.
- 2. (a) 0,3907; (b) 0,4842; (c) 0,8712; (d) 0,0162; (e) 0,2177; (f) 0,0637; (g) 0,1561.
- 3. (a) 0,3944; (b) 0,2734; (c) 0,2266; (d) 0,1056.
- 4. (a) 0,7734; (b) 0,1587; (c) 0,2853; (d) 0,8457.
- 5. (a) 48,78%; (b) 14,8%; (c) 66,78%; (d) 18,94%; (e) 12,94%; (f) 22,26%; (g) 36,05%; (h) 1.086, aproximadamente; (i) limite mínimo igual a 2.312 kcal/dia.
- 6. Os limites são 250,4; 323,2 e 372.
- 7. 0,3413.
- 8. 0,1574.
- 9. (a) 0,3023; (b) 0,5328.
- 10. (a) 412; (b) 333.
- 11. (a) aproximadamente 1; (b) 0,8944; (c) 0,0062.
- 12. 0,5786.
- 13. 0,0668.
- 14. 0,2514.
- 15. 0,4247.
- 16. 0,7413.
- 17. 0,1151.
- 18. Aproximadamente 268 motores.
- 19. (a) 0,1986.
- 20. (a) 6 (aproximadamente); (b) o teste deve ser resolvido em menos de 55,25 minutos.
- 21. (a) 0,2998; (b) 34,10; (c) 46,70.
- 22. (a) 0,3085; (b) 0,0668; (c) 0,2417; (d) 448 e 552; (e) 335.
- 23. (a) 15.468 alunos. (b) 1,4432 e 1,8368.
- 24. 45,3054 t.
- 25. Os limites são iguais a: 0, 3,6236, 4,8564 e 5,4176 kg. Assim, entre 0 e 3,6236 kg serão classificados como pequenos; entre 3,6236 e 4,8564 kg serão classificados como médios;

- entre 4,8564 e 5,4176 kg serão classificados como grandes; acima de 5,4176 kg serão classificados como extras.
- 26. (a) 3,4040 anos; (b) 2,28%.
- 27. (a) 15,2550 h; (b) 9,5250 e 14,4750 h.
- 28. (a) aproximadamente 74 candidatos; (b) completar em menos de 30,50 minutos.
- 29. (a) 36,64; (b) 0,2417; (c) $33,40 \le \mu \le 46,60$.
- 30. (a) 0,6915; (b) 0,2660; (c) 0,6975.
- 31. (a) 0,0062; (b) 0,4013; (c) 0,1747; (d) 0,6247.
- 32. (a) 8,00; (b) 6,35.
- 33. (a) 0,5948; (b) 0,6950; (c) 0,2556; (d) 0,1042.
- 34. (a) 7,80; (b) 7,21.
- 35. (a) 0,9207; (b) 09581; (c) 0,7462.
- 36. (a) 215,60; (b) 212,30.
- 37. (a) 0,8133; (b) 0,3601.
- 38. (a) 24,87 anos; (b) 27,15 anos.
- 39. 24 alunos devem ser aprovados.
- 40. (a) 0,3085; (b) 0,9332; (c) 96,4 minutos.
- 41. (a) 2.406; (b) 2.264 < x < 2.736.
- 42. 98,8568; 143,9762 e 170,2688.
- 43. (a) 0,2810; (b) 0,5987; (c) 234,80.
- 44. (a) 0,8729; (b) 0,0136.
- 45. (a) 0,0418; (b) 0,3897; (c) 0,0163.
- 46. (a) 0,9750; (b) 0,8708; (c) 0,4709.
- 47. 5.681 candidatos.
- 48. (a) 0,9997; (b) aproximadamente zero.
- 49. 0,3409.
- 50. 0,1038.
- 51. (a) 0,3015; (b) 0,67.
- 52. (a) 0,2296; (b) 0,0465; (c) 0,8347.
- 53. 70,21%.

Capítulo 8

- 1. Amostra representa uma parcela extraída da população, são os elementos extraídos desta, sem modificar as características essenciais da população, para representá-la em uma análise, daí a sua relação com população.
- 2. A teoria da amostragem é o estudo das relações existentes entre uma dada população e as amostras extraídas dela.

- Amostragem com reposição é aquela em que cada elemento de uma população pode ser escolhido mais de uma vez, enquanto na amostragem sem reposição os elementos não podem ser escolhidos mais de uma vez.
- 4. Existem quatro planos de amostragem probabilística: aleatório, sistemático, estratificado e por conglomerado.
- Amostragem probabilística é uma amostra no qual se conhece a probabilidade de todas as possíveis combinações amostrais, esta é objetiva, enquanto na amostragem não probabilística a variabilidade amostral não pode ser estabelecida com precisão.
- 6. No primeiro caso, trata-se de uma população finita, pois há num momento em que esses elementos chegam ao fim, podendo-se fazer a contagem destes, enquanto no segundo trata-se de uma população infinita, pois ao se lançar a moeda um determinado número de vezes os valores obtidos foram extraídos de uma população, na qual não é possível fazer a contagem, já que a moeda deveria ser lançada infinitas vezes.
- 7. Representam uma maneira de se adquirir uma amostra representativa, na qual cada elemento da população tem a mesma chance de ser incluído na amostra.
- 8. A amostragem sistemática é uma amostra que necessita de uma lista dos elementos da população e onde a seleção dos elementos ocorre de forma sistemática e seqüencial.
- Para a população discreta, a amostra aleatória é aquela em que cada elemento da população tenha a mesma chance de ser selecionado para a amostra.
- Para a população contínua, a amostra aleatória é aquela em que a probabilidade de qualquer intervalo de valor a ser incluído na amostra é igual à percentagem da população no intervalo.
- 11. (a) desconhecida, pois a população desta amostragem é infinita; (b) o número de vezes que "coroa" aparece, sobre o número de vezes que se lançou a moeda, logo: $10/20 = \frac{1}{2}$; (c) é similar à percentagem esperada na população, que neste caso é desconhecida.
- 12. Neste caso é preferível usar a amostragem, pois, tratando-se de uma grande população, analisar o número de pessoas contagiadas levaria muito tempo, seria custoso e, como todo mundo sabe, uma comunidade ao longo de sua existência tende a se modificar, provocando a

alteração da comunidade original, ou seja, nesse período poderiam surgir diversas variáveis, como o alcance de um novo estágio da doença, alastramento e diferentes atuações nas regiões que provocassem uma combinação de populações devido à propagação da doença. Ou seja, as variáveis modificariam a população original, o que tornaria inválido o censo.

13. Não concordaria. Primeiro, por se tratar de uma população infinita (já que a empresa só deixará de produzir carros caso feche), seria impossível a utilização de um censo. Além disso, essa empresa necessita de informações do tipo capacidade/flexibilidade/resistência de um automóvel. No caso de uma empresa automobilística que produz milhares de carros constantemente (independentemente do fluxo), seria inviável testar um por um, já que se trata de um teste destrutivo. Neste caso, os carros possuem características iguais ou semelhantes de acordo com a sua linha de montagem. Por isso, a generalização seria mais prudente.

Supondo um teste com carros do modelo Corsa 1.0. A empresa produz 50.000 mil carros. Seria melhor fazer o teste com algumas unidades, por exemplo, e, a partir daí, generalizar.

- 14. Seria mais conveniente analisar essa amostra por conglomerados, pois, sem dúvida, se fosse analisada como uma amostra aleatória simples, seria incluindo proprietários de automóveis de localidades afastadas do estado, o que dificultaria a coordenação e a padronização na coleta de dados; por outro lado, se fosse analisada por conglomerados, conteria os proprietários de carros em áreas concentradas, ou seja, em áreas do estado apenas, o que reduziria o custo e a facilidade da coordenação. Além disso, selecionando aleatoriamente conglomerado em todo o estado, provavelmente se obterá um amostra mais representativa da população.
- 15. A melhor alternativa seria o uso da amostragem com reposição, já que é possível extrair o mesmo elemento mais de uma vez. Ou seja, o rato utilizado uma vez, e onde se detectou que o antídoto surtiu efeito, pode ser reutilizado para outros testes. Por se tratar de um teste do tipo destrutivo, não é possível testar reações e a possível cura em toda a população. O tipo de pesquisa permite a reposição dos animais estudados. A amostragem com reposição pode ser mais conveniente, permitindo a chance de

repetidas extrações futuras de elementos envolvidos.

- (a) a proporção amostral é medida utilizando a quantidade de caras aparecidas, sobre o total de vezes jogadas. Então a proporção amostral encontrada na jogada seria igual a 30/60 = 0,5 ou 50%; (b) a população da questão, considerando o universo teórico possível, seria formada por todas as futuras e possíveis jogadas, já que não foi informado o total de jogadas mencionam-se apenas as que foram contadas para a amostra; (c) como não é definido o número de futuras extrações ou jogadas, a população é considerada infinita (∞); (d) o tamanho da população é 60, que foi o número que a moeda foi jogada no ar.
- 17. O censo é um processo de inferência em que se analisam todos os elementos de uma população. A amostragem é a análise de uma parte (amostra) do todo que seria a população. Uma das vantagens da amostragem é que, dependendo do tipo de informação requerida, pode ser mais atualizada. Também pode ser usada para testes destrutivos e população infinita. Como desvantagem, cita-se o perigo de erro da generalização. A depender das características dos elementos da população analisada, pode ocorrer a perda ou modificação das informações, tornando a amostra não representativa do todo.
- 18. Seria a amostragem por julgamento. Ao contrário de uma amostragem aleatória dos quatro locais do teste, a melhor opção é que o administrador ou dono na fazenda faça um "julgamento", um reconhecimento da melhor escolha, pois é preciso analisar características como: tamanho da fazenda; localização da área; quantidade das aves abatidas por dia; como cada fazenda utiliza as técnicas; lucratividade; custos da atual técnica de abate das aves; outros.

Neste caso, a amostragem por julgamento pode ser mais rápida e menos custosa. Nem sempre este tipo pode permitir uma avaliação objetiva, mas para o fazendeiro seria mais vantajoso fazer uma amostragem a partir de um lugar previamente escolhido de onde certamente poderia dar resultados que possam ser estendidos às outras três fazendas espalhadas no interior do Nordeste.

19.	
20.	

Capítulo 9

Inferência da média populacional – desvio padrão populacional conhecido e população infinita

- 1. $2.328,6956 \le \mu \le 2.811,3044$
- 2. $15.606,7459 \le \mu \le 24.393,2541$
- 3. $61,9420 \le \mu \le 94,0580$

Inferência da média populacional – desvio padrão populacional desconhecido e população infinita

- 1. $1,6275 \le \mu \le 1,6785$
- 2. Da tabela: média amostral = 2.925,5556, desvio amostral = 345,9809, inferência: $2.684,4992 \le \mu \le 3.166,6120$.
- 3. $8,1283 \le \mu \le 9,5117$.
- 4. $3,82457 \le \mu \le 6,57543$ toneladas.
- 5. Considerando um erro bicaudal (não é o procedimento mais adequado): \$ 75.046,6400 $\le \mu \le \$$ 84.953,3600. Para o ponto de menor faturamento, o lucro seria igual a \$ 45.532,65, o que sugeriria a viabilidade do empreendimento.
- 6. (a) $2,1130 \le \mu \le 2,8870$; (b) 0,387.
- 7. $243,7286 \le \mu \le 256,2720$.
- 8. (a) $182,6013 \le \mu \le 217,3987$; (b) $177,8156 \le \mu \le 222,1844$; (c) 25,5532.
- 9. $9.705,3300 \le \mu \le 10.294,6700$.
- 10. (a) $7.443,2000 \le \mu \le 7.756,8000$; (b) $7.468,8000 \le \mu \le 7.731,2000$.
- 11. $7.488,0000 \le \mu \le 7.712,0000$.
- 12. $122,9901 \le \mu \le 129,0099$.
- 13. $92,6480 \le \mu \le 97,3520$.

Amostragem de populações finitas

- 1. $77,7441 \le \mu \le 86,2559$.
- 2. $221,5602 \le \mu \le 304,4398$.
- 3. (a) $98.611,0231 \le \mu \le 101.388,9769$; (b) aproximadamente 92%.
- 4. (a) 13,6311; (b) 0,3121.

- 5. (a) $32,8824 \le \mu \le 33,9576$; (b) $19,729,44 \le Valor\ Total \le 20.374,56$.
- 6.

a)
$$\mu = \overline{x} \pm z \frac{\sigma_x}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}};$$

$$\mu = 30 \pm 1,65 \frac{4}{\sqrt{200}} \sqrt{\frac{2000 - 200}{2000 - 1}};$$

$$\mu = 30 \pm 0,4426;$$

b)
$$\mu = 45 \pm 1,65 \frac{6}{\sqrt{48}} \sqrt{\frac{600 - 48}{600 - 1}} ;$$
$$\mu = 45 \pm 1,3717;$$

c)
$$\mu = 10 \pm 1,65 \frac{2}{\sqrt{120}} \sqrt{\frac{840 - 120}{840 - 1}}$$
;
 $\mu = 10 \pm 0,2790$.

7. Aplicando as fórmulas, tem-se que:

$$\mu = \overline{x} \pm z \frac{\sigma_x}{\sqrt{n}}; \ \mu = 30 \pm 2,33 \frac{6}{\sqrt{60}};$$

$$\mu = 30 \pm 1,8048.$$

- 8. Média amostral = 5,1; $4,4812 \le \mu \le 5,7188$.
- 9. $1,6514 \le \mu \le 1,9486$.
- 10. (a) 7,7801 $\leq \mu \leq$ 8,9599; (b) 7,4728 $\leq \mu \leq$ 9,2672, mais amplo, já que a amostra foi menor
- 11. $58,8819 \le \mu \le 58,3581$.
- 12. $36,3622 \le \mu \le 47,6378$.

Intervalos de confiança unilaterais

- 1. 748,9815.
- 2. 15,3664.
- 3. Como se tem σ_x conhecido, deve ser usada a fórmula do limite superior:

$$\overline{x} + z\sigma_{\overline{x}} = \overline{x} + z\frac{\sigma}{\sqrt{n}} = 30 + 1,96\frac{7}{\sqrt{100}} = 30 + 1,372.$$

- 4. Da tabela: média = 9,72; desvio = 1,2423. (a) $\mu \le 10,2593$; (b) 9,1008 $\le \mu \le 10,3392$; (c) divergiriam em função do posicionamento do nível de significância. Os cuidados envolveriam o emprego de limites unilaterais.
- 5. (a) 0,0985; (b) 0,0049; (c) 0,9950.
- 6. (a) $0.1660 \times 27 = 4.48 = \text{aproximadamente}$ 4; (b) 0.7642.
- 7. (a) 42,2333; (b) $44,5000 \le \mu \le 55,5000$.

$$\pm z \sqrt{\frac{(x/n)[1-(x/n)]}{n}} \sqrt{\frac{N-n}{N-1}} = 0.10 \pm 1.96 \sqrt{\frac{(0.10)[0.90]}{100}} \sqrt{\frac{1.000-100}{1.000-1}} = 0.10 \pm 0.0558.$$

- 6. 30 pneus correspondem a 10% da amostra observada, resultando, portanto, em uma proporção amostral de 0,10. Como o nível de con-
- fiança é de 99%, pela tabela, tem-se Z igual a 2,58. Como q = 1 0,10 = 0,90. Aplicando as fórmulas, tem-se que:

(a) $3940 \le N \le 6540$; (b) Min = 4090 Max =

(a) $0.3339 \le P \le 0.5279$; (b) $0.6094 \le P \le$

Estimação da proporção em uma população

0,7890; (c) $0,1106 \le P \le 0,2634$.

 $0.5035 \le P \le 0.6599$.

 $0,0221 \le P \le 0,0669$.

$$e = z\sqrt{\frac{(x/n)[1-(x/n)]}{n}}; e = 2,58\sqrt{\frac{(0,10)[0,90]}{300}}; e = 0,04468.$$

1.

2.

3.

4.

5.

6390.

- 7. $0.3107 \le P \le 0.4493$.
- 8. $0,6641 \le P \le 0,7359$.

Determinação do tamanho da amostra

- 1. 204.
- 2. 74.
- 3. 31.
- 4. 2.163.
- 5. Como o desvio padrão (σ_x) é 8,0 e o erro é 0,9 e queremos um intervalo de confiança de 95%, e Z=1,96, teremos: $n = \left[z \frac{\sigma_x}{e}\right]^2; n = \left[1,96 \frac{8}{0.9}\right]^2; n = 303,5338.$

6.
$$n = \left(z \frac{s_x}{e}\right)^2 = \left(1,64 \frac{42}{6}\right)^2 = 131,7904$$
. A amos-

tra deveria ser formada por 132 elementos.

- 7. $n = \frac{1,96^2(28)^2 5.000}{1,96^2(28)^2 + 4^2(5.000 1)} = 181,4438.$
- 8. Como o problema não fornece informações sobre o tamanho da população ou sugestões sobre a proporção, os cálculos devem basearse no intervalo mais amplo possível, então a proporção é 0,5. Como queremos o intervalo 98%, usamos Z=2,33.

$$n = z^{2} \left\{ \frac{(x/n)[1 - (x/n)]}{e^{2}} \right\}; n = 2,33^{2} \left\{ \frac{(0,5)[0,5]}{0,09^{2}} \right\}; n = 167,5586.$$

- 9. Já que nada é dito sobre p, assume-se que p = q = 0,50. (a) 642; (b) 379; (c) 0,0917; (d) 0,7924.
- 10. (a) 479; (b) 436; (c) 0,0899; (d) 0,9998.
- 11. (a) 601; (b) 517; (c) 589.

Variados

- 1. $P = 0.15 \pm 0.0589$.
- 2. $\mu = 1.575 \pm 103,3825$.

- 3. $\mu = 56,98 \pm 1,8085$.
- 4. $\mu = 0.2529 \pm 0.0185$.
- 5. n = 28,2 = 28 elementos.
- 6. (a) n = 1.168 elementos; (b) a amostra deveria ser representativa da população.
- 7. (a) $\mu = 90,4375 \pm 13,6103$; (b) Formalmente, deveria ser empregada a distribuição t (de Student), já que apenas o desvio padrão amostral (s) é fornecido e o número de elementos (n = 16) é menor que 30.

- 8. $\mu = 585 \pm 42,1165$.
- 9. Aproximadamente 959 farmácias deveriam ser analisadas.
- 10. (a) $41,0318 \le \mu \le 44,9682$; (b) $40,4115 \le \mu \le 45,5885$; (c) seriam mais amplos, já que o nível de significância foi menor.
- 11. A estimativa da média populacional de receitas estaria entre 3.251,13 e 3.852,65. No ponto de receita mínima (\$ 3.251,13) o empreendimento seria lucrativo (lucro = \$ 195,34), sendo assim, seria viável. Outra solução, mais correta, envolveria o cálculo de alfa unicaudal.
- 12. Cuidado! A variância é fornecida na questão, torna-se necessário encontrar o desvio padrão. $14,2268 \le \mu \le 15,7732$.
- 13. $\mu = 6.000 + /-129,74$.
- 14. (a) não necessariamente, a amostra deveria ser representativa e seria preciso analisar o erro associado à estimativa; (b) os procedimentos de amostragem: a amostra deveria ser representativa da população. Para isso, poderiam ser empregadas diferentes técnicas como a amostragem estratificada, por conglomerados etc.
- 15. 562 + /-23,3752
- 16. Aproximadamente 68.
- 17. n = aproximadamente 1.457. Os cuidados deveriam permitir a construção de uma amostra representativa da população.
- 18. $28,70 \le \mu \le 35,30$.
- 19. $140,328 \le \mu \le 195,6720$.
- 20. $382,0786 \le \mu \le 575,9214$.
- 21. $\mu \le 857,8352$. Logo, como a impressora é mais pesada, não deveria ser transportada.
- 22. $0.9345 \le P \le 0.9697$.
- 23. $1.414,4217 \le \mu \le 1.575,5783$.

24.

(a)	Amostragem	Censo
Vantagens	Mais rápida e mais barata	Não existe erro de inferência
Desvantagens	Existe o erro inferencial	Mais lento e mais caro

(b) a amostra deveria ser representativa. As probabilidades de características da amostra e da população deveriam ser iguais; (c) metodologias: aleatória simples, sistemática, estratificada e por conglomerados.

- 25. $\mu \le 63,5581$. Como o peso é superior, a corda não deveria ser utilizada.
- 26. $270,3478 \le \mu \le 289,6522$.
- 27. $16,2834 \le \mu \le 16,4966$.
- 28. A amostra deveria ter 471 componentes.
- 29. No mínimo, deveriam ser produzidos 142 colchões. Logo, deverão ser encomendados $142 \times 8 = 1.136 \text{ m}^2$ de tecido.
- 30. 16.997,4877.
- 31. (a) 17.118,4753; (b) 18000 + -942,2575.
- 32. 21.480,9534.
- 33. (a) 21.795,3797; (b) 23.000 + /-1.372,5370.
- 34. 655,0208.
- 35. 40,1689.
- 36. $16.978,23 \le \mu \le 19.021,77$.
- 37. $51,4017 \le \mu \le 70,4317$.
- 38. 2.593.268,38.
- 39. $1,6087 \le \mu \le 1,7223$.
- 40. 20 elementos.
- 41. $1.713.794,27 \le \mu \le 1.886.205,73$.
- 42. $1,6076 \le \mu \le 1,7430$.
- 43. $\mu \le 3.750.666,67$.
- 44. 136 lotes.
- 45. (a) $\mu \le 14,4513$; (b) $\mu \ge 21,5487$

Capítulo 10

Teste de uma amostra para médias

- 1. ————
 2. (a) H_1 : $\mu \neq 7,6$; $Z_c = +/-1,96$; $Z_t = -2,582$, rejeito H_0 ; (b) H_1 : $\mu < 7,6$; $Z_c = -1,64$; $Z_t = -2,582$, rejeito H_0 .
- 3. (a) H_1 : $\mu < 58$; $t_c = -1,9829$; $t_t = -1,599$, aceito H_0 ; (b) H_1 : $\mu < 58$; $Z_c = -1,88$; $Z_t = -2,867$, rejeito H_0 .
- 4. H_1 : $\mu > 15$; $t_c = 1,8553$; $t_t = 3,875$, rejeito H_0 .
- 5. H_1 : μ < 850; $t_c = -2,05$; $t_t = -1,225$, aceito H_0 .
- 6. H_1 : $\mu < 1500$; $Z_c = -1,65$; $Z_t = -1,732$, rejeito H_0 .
- 7. H_1 : $\mu < 1450$; $Z_c = -2,05$; $Z_t = -14,3747$, rejeito H_0 .

- 8. H_1 : μ < 450; $t_c = -2,1770$; $t_t = -4,082$, rejeito H_0 .
- 9. H_1 : $\mu < 10.000$; $Z_c = -1,65$; $Z_t = -0,422$, aceito H_0 .
- 10. H_1 : $\mu \neq 10$; $Z_c = +/-1,96$; $Z_t = -1,3333$, aceito H_0 .
- 11. H_1 : $\mu < 100$; $Z_c = -1,88$; $Z_t = -7,746$, rejeito H_0 .
- 12. H_1 : $\mu < 14$; $Z_c = -2,05$; $Z_t = -1,5652$, aceito H_0 .
- 13. H_1 : $\mu < 1,90$; $Z_c = -2,33$; $Z_t = -3,1298$, rejeito H_0 . É possível aceitar a hipótese da mudança ter reduzido substancialmente o tempo.
- 14. H_1 : $\mu > 1500$; $Z_c = 1,65$; $Z_t = 3,354$, rejeito H_0 .
- 15. H_1 : $\mu < 1$; $Z_c = -2,33$; $Z_t = -0,885$, aceito H_0 .
- 16. H_1 : μ < 4; $Z_c = -1,65$; $Z_t = -2,191$, rejeito H_0 .
- 17. (a) alfa = 5%: H_1 : μ < 20; Z_c = -1,65; Z_t = -7,818, rejeito H_0 ; (b) alfa = 10%: H_1 : μ < 20; Z_c = -1,28; Z_t = -7,818, rejeito H_0 .
- 18. (a) H_1 : $\mu < 1000$; $Z_c = -1,65$; $Z_t = -2,828$, rejeito H_0 ; (b) sim; (c) erro do tipo I.

Teste de uma amostra para proporção

- 1. H_1 : P > 0,03; $Z_c = 1,65$; $Z_t = 1,3686$, aceito H_0 .
- 2. H_1 : P < 0,19; $Z_c = -2,33$; $Z_t = -0,3457$, aceito H .
- 3. H_1 : P > 0,02; $Z_c = 1,65$; $Z_t = 0,9946$, aceito H_0 .
- 4. (a) H_1 : P > 0,06; $Z_c = 1,75$; $Z_t = 2,1058$, rejeito H_0 ; (b) (c)
- 5. H_1 : P > 0,50; $Z_c = 1,55$; $Z_t = 1,4213$, aceito H_0 . Não é possível supor a preferência de A.
- 6. H_1 : P < 0,70; $Z_c = -1,75$; $Z_t = -0,4857$, aceito H_o .
- 7. H_1 : P < 0,80; $Z_c = -1,65$; $Z_t = -9,2431$, rejeito H_o .
- 8. H_1 : P < 0,70; $Z_c = -1,88$; $Z_t = -2,0107$, rejeito H_0 .
- 9. H_1 : $P \neq 0,50$; $Z_c = +/-2,17$; $Z_t = 0,8951$, aceito H_0 .
- 10. H_1 : P > 0,50; $Z_c = 1,65$; $Z_t = 20,4124$, rejeito H_0 .
- 11. H_1 : P < 0,80, $Z_c = -1,88$, $Z_t = -0,7007$, aceito H_0 .
- 12. H_1 : P < 0,95; $Z_c = -1,48$; $Z_t = 3,9796$, rejeito H_0 .

- 13. H_1 : P < 0,95; $Z_c = -2,33$; $Z_t = -1,9767$, aceito H_o .
- 14. (a) H_0 : $P = 0.03 H_1$: P > 0.03 (b) 5.37%.
- 15. H_1 : P < 0,25; $Z_c = -1,65$; $Z_t = -1,2884$, aceito H_0 .
- 16. H_1 : P < 0,70; $Z_c = -1,88$; $Z_t = -2,2224$, rejeito H_o .
- 17. H_1 : P < 0,85; $Z_c = -1,65$; $Z_t = -10,1697$, rejeito H_0 .
- 18. H_1 : P > 0,50; $Z_c = 2,05$; $Z_t = 22,3607$, rejeito H_0 .
- 19. (a) H_1 : P> 0,50, $Z_c = 1,65$ Zt = 3,1449, Rejeito H_0 , aceitando a hipótese de "paranormalidade"; (b) basta substituir o valor de p no cálculo do p teste crítico. Acha-se p = 0,42 ou p = 0,58. Logo, para ser aceita a hipótese dos poderes "paranormais" do candidato, este deve acertar mais que 58 alternativas das 100 formuladas.

Exercícios diversos com testes de uma amostra

- 1. Média é igual a 318, Desvio é igual a 44,7533. To = +/-1,7613. Aceito H_0 , é possível supor que a média do aumento de peso seja de 300 gramas.
- 2. H_0 : P = 50%; H_1 : P < 50%; Aceito H_0 .
- 3. H_0 : P = 50%; H_1 : P > 50%; Aceito H_1 , é possível supor que a Chapa Rumbora vença as eleições.
- 4. (a) H_0 : P = 70%; H_1 : $P \neq 70\%$; Rejeito H_0 , pois não é possível supor que a proporção das pessoas que bebam vinho seja de 70%.

(b)
$$H_0$$
: $P = 60\%$; H_1 : $P \neq 60\%$; $Z = \frac{0,6428 - 0,6}{\sqrt{\frac{0,6428 \cdot 0.3571}{280}}} = -1,49$; Aceito H_0 , é

possível supor que a proporção das pessoas que bebam vinho tinto seja de 60%.

(c)
$$H_0$$
: $P = 35\%$; H_1 : $P \neq 35\%$; $Z = \frac{0,5428 - 0,35}{\sqrt{\frac{0,5428 \cdot 0,4571}{280}}} = 6,47$; Rejeito H_0 ,

pois não é possível supor que a proporção de homens que bebam vinho seja de 35%.

5. H_0 : $\mu = 18$; H_1 : $\mu < 18$; $t = \frac{12 - 18}{\frac{4}{\sqrt{10}}} = -4,7434$; Rejeito H_0 .

- 6. H_0 : $\mu = 100$; H_1 : $\mu \neq 100$; Rejeito H_0 , não é possível supor que a embalagem contenha 100 ml do repelente, isto é, o fabricante não está sendo honesto.
- 7. H_0 : $\mu = 720$; H: $\mu < 720$; $t = \frac{698 720}{\frac{35}{\sqrt{28}}} = -3,326$; Rejeito H_0 , não é

possível aceitar a alegação do fabricante, então ele não esta sendo honesto ao afirmar que seus elevadores suportam 720 kg.

- 8. H_0 : $\mu = 233$; H_1 : $\mu > 233$; $Z_{teste} = \frac{231,5 233}{\frac{7,6}{\sqrt{50}}} = -1,3956$; Aceito H_0 .
- 9. H_1 : $\mu \neq 6$; $t_c = +/-2,2010$; $t_t = 0,8257$, aceito H_0 .
- 10. (a) H_1 : $\mu < 11$; $z_c = -1,88$; $z_t = -1,6667$, aceito H_0 ; (b) 8,6980 dias $< \mu < 11,3020$ dias.
- 11. (a) 52,86%; (b) 44,43%.
- 12. 611,5040.
- 13. (a) Teste unicaudal: rejeita-se a hipótese se passarem menos pessoas do que o alegado; (b) H_0 : M = 1000; H_1 : M < 1000; tabela t; $t_{crítico} = -1,761$; $t_{teste} = -4,6476$; Rejeita-se H_0 .
- 14. H_0 : M = 500; H_1 : M < 500; T_{teste} = -2,86; Rejeito H_0 , não é possível aceitar a afirmação do fabricante
- 15. (a) H₀: P = 0,03; H₁: P > 0,03; Z_{teste} = 0,8720; Aceito H₀; (b) Teste de hipóteses unicaudal, já que a preocupação consiste em encontrar P maior que o valor alegado.
- 16. H_0 : M = 35000; H_1 : M < 35000; $Z_{teste} = -15,28$, rejeito a hipótese de igualdade.
- 17. H_0 : P = 90%; H_1 : P < 90%; $Z_{teste} = -1,51186$, rejeito a hipótese de igualdade.
- 18. H_0 : P = 0,80; H_1 : P < 0,80; tabela z; $Z_{\text{crítico}} = -1,35$; $Z_{\text{teste}} = -3,9598$; Rejeita-se H_0 .
- 19. Poderia ser resolvida de diferentes maneiras. No ponto de receita mínima (\$ 901.633,94) o lucro é positivo (\$ 321.307,16); logo, seria possível admitir a viabilidade do empreendimento.
- 20. H_0 : M = 8; H_1 : $M \neq 8$; $Z_c = +/-1,1,81$, $Z_{teste} = -2,02$; Rejeito H_0 , não é possível supor a igualdade.

- 21. H_1 : M < 400 ml; $Z_c = -1.88 Z_t = 1.7143$ Aceito H_0 . Seria possível concordar com o fabricante.
- 22. H_1 : P < 40% $Z_c = -1,88 Z_t = -0,7439$ Aceito H_0 . É possível concordar com a alegação da instituição.

Teste de igualdade de médias populacionais

- 1. H_1 : $\mu_{AND} < \mu_{REL}$; $t_c = -1,9937$; $t_t = -0,7618$; aceito H_0 .
- 2. H_1 : $M_f > M_c$, $Z_c = 2,05$, $Z_t = 8,77$, aceito H_1 , seria possível concordar com a suposição de que a duração do fabricante é superior.
- 3. H_1 : $\mu_A \neq \mu_B$; $Z_c = +/-2,05$; $Z_t = -0,3607$; aceito H_0 .
- 4. H_1 : $\mu_C > \mu_B$; $t_c = 2,1504$; $t_t = 0,4600$; aceito H_0 .
- 5. (a) as hipóteses a serem formuladas seriam: H_0 : $\mu_a = \mu_b$ e H_1 : $\mu_a > \mu_b$; (b) o teste t deveria ser unicaudal, já que a preocupação está na verificação do fato da média de a ser **maior** que a média de b; c) H_1 : $\mu_a > \mu_b$; $t_c = 2,3984$; $t_c = 0,8257$; aceito H_0 .
- 6. H_1 : $\mu_{Micro} > \mu_{Sala}$; $t_c = 1,7247$; $t_t = 1,1794$; aceito H_0 .

Teste de diferença de médias populacionais

- 1. Médias amostrais = 1,96 e 1,66; Desvios amostrais = 0,3134 e 0,2989. H_1 : $\delta > 0,10$; t_c = 2,2137; $t_r = 1,4604$; aceito H_0 .
- 2. H_1 : $\delta > 30$; $t_c = 1,8495$; $t_t = 0,8388$; aceito H_0 .
- 3. H_1 : $\delta < 1000$; $Z_c = -1.88$; $Z_t = -1.9389$; rejeito H_0 .
- 4. H_1 : $\delta > 36.000$; $Z_c = 2,05$; $Z_t = 0,7190$; aceito H_0 .
- 5. H_1 : $\delta \neq 0$ (ou $\mu_a \neq \mu_b$); $Z_c = +/-1,96$; $Z_t = -4,7881$; rejeito H_0 .
- 6. H_1 : $\delta \neq 0$ (ou $\mu_n \neq \mu_v$); $t_c = 2,4851$; $t_t = 3,1558$; rejeito H_0 .
- 7. H_1 : $\delta \neq 0$ (ou $\mu_a \neq \mu_b$); $t_c = +/-1,7171$; $t_t = -1,7548$; rejeito H_0 .

Teste de igualdade de proporções populacionais

- 1. H_1 : $P_n > P_v$; $Z_c = 1,34$; $Z_t = 1,4006$; rejeito H_0 .
- 2. H_1 : $P_s > P_t$; $Z_c = 2,33$; $Z_t = 2,1222$; aceito H_0 .
- 3. H_1 : $P_{BA} \neq P_{PE}$; $Z_c = +/-1,88$; $Z_t = -3,6549$; rejeito H_0 .
- 4. H_1 : $P_1 \neq P_2$; $Z_c = +/-1,96$; $Z_t = -2,3514$; rejeito H_0 .
- 5. H_1 : $P_A \neq P_B$; $Z_c = +/-1,65$; $Z_t = 0,5990$; aceito H_0 .
- 6. H_1 : $P_F \neq P_{NF}$; $Z_c = +/-1,96$; $Z_t = -2,2799$; rejeito H_0 .
- 7. H_1 : $P_{\text{video}} > P_{\text{sem video}}$; $Z_c = 1,88$; $Z_t = 1,7678$, aceito $H_{0.}$

Teste de hipóteses: duas amostras para diferença de proporções

1. H_1 : $\delta \neq 0$; $Z_c = +/-1,96$; $Z_t = 1,4575$; aceito H_0 .

Exercícios diversos com duas amostras

- 1. H_0 : $P_{sp} = P_{rj}$; H_1 : $P_{sp} \neq Prj$; $Z_{teste} = 2,1359$; rejeito H_0 , é possível supor a diferença de proporções na população.
- 2. H_0 : $P_a = P_b$; H_1 : $P_a > P_b$; $Z_{teste} = 4,2442$; rejeito H_0 , é possível supor que o desemprego na população de Salvador é maior.
- 3. Cálculos iniciais: Média de A = 7,56; desvio padrão de A = 0,88; Média de B = 6,22; desvio padrão de B = 1,56. (a) não. Em função da dispersão dos dados das amostras, os desempenhos médios nos universos devem ser analisados mediante o emprego de teste de hipóteses; (b) H₀: M_a = M_b; H₁: M_a > M_b; (c) Unilateral, em função de H₁; (d) T_{teste} = 2,24, aceito a hipótese de igualdade.
- 4. H_0 : $P_a = P_b$; H_1 : $P_a \neq P_b$; $Z_{teste} = 5,30$, rejeito a hipótese de igualdade.
- 5. H_0 : $M_1 = M_2$; H_1 : $M_1 \neq M_2$; $Z_{teste} = -5,4709$; rejeito H_0 , não é possível supor a igualdade.
- 6. H_0 : $M_I = M_{II}$; H_1 : $M_I \neq M_{II}$; $Z_{teste} = 3,59$; rejeito H_0 , não é possível supor a igualdade das médias populacionais.
- 7. H_0 : $M_m = M_v$; H_1 : $M_m < M_v$; $Z_{teste} = -16,31$; rejeito H_0 . É possível supor que a média populacional do vespertino seja maior.

- 8. H_0 : $M_a = M_b$; H_1 : $M_a < M_b$; $Z_{teste} = -2,5763$; rejeito H_0 , é possível supor que o consumo de B seja maior.
- 9. H_0 : $P_a = P_b$; H_1 : $P_a \neq P_b$; $Z_{teste} = -1,29014$, aceito a hipótese de igualdade.
- 10. Da tabela sabe-se que a média é igual a 472,6667 e o desvio amostral é igual a 23,1294. Obtém-se que: H_1 : M < 495, $t_c = -2,0961$, $t_t = -3,3449$, rejeito H_0 . Não é possível concordar com a alegação do fabricante.
- 11. H_1 : P < 0,96, $Z_c = -1,34$, $t_t = -1,7170$, rejeito H_0 .
- 12. H_1 : P < 0,80, $Z_c = -1,75$, $Z_t = 1,7971$, aceito H_0 .
- 13. H_1 : $P_{SE} \neq P_{CO}$, $z_c = +/-1,75$, $z_t = -1,2573$, aceito H_0 .
- 14. H_1 : $M_{SSA} < M_{REC}$, $t_c = -1,7171$, $t_t = -2,7561$, rejeito H_0 .
- 15. H_1 : $M_V < M_N$, $Z_c = -1,28$, $Z_t = -3,2237$, rejeito H_0 .
- 16. H_1 : $M_{AWZ} < M_{AXC}$, $Z_c = -1,28$, $Z_t = -1,0708$, aceito H_0 .
- 17. H_1 : $M_v < M_m$; $Z_c = -2,05 Z_t = -3,0324$. Rejeito H_o . Não é possível concordar os alunos.

Capítulo 11

Teste do qui-quadrado

- A estatística do qui-quadrado foi igual a 2,2105, com um nível de significância aproximadamente igual a 0,5299. As diferenças nas freqüências das respostas não foram consideradas significativas.
- 2. (a) a estatística do qui-quadrado foi igual a 262,795, com um nível de significância aproximadamente igual a zero (0,000). As diferenças nas freqüências das respostas foram consideradas significativas; (b) a estatística do qui-quadrado foi igual a 410,1846, com um nível de significância aproximadamente igual a zero (0,000). As diferenças nas freqüências das respostas foram consideradas significativas.

Teste do qui-quadrado para independência ou associação

A estatística do qui-quadrado é igual a 6,858.
 O nível de significância é 0,009. Existe, portanto, associação significativa entre as variáveis.

4. A estatística do qui-quadrado é igual a 20,1258. O nível de significância é 0,7402. Não existe associação significativa entre as variáveis.

Teste dos sinais

- 5. H_1 : P > 0,50, $Z_c = 1,28$, $Z_t = 1,8856$. Rejeita-se H_0 e aceita-se H_1 . Existe preferência significativa.
- 6. H_1 : P > 0,50, $Z_c = 1,65$, $Z_t = 0,6882$. Rejeita-se H_1 e aceita-se H_0 . Não existe preferência significativamente maior que 50% pelo *jingle* "Para frente e com força".

Teste de Wilcoxon

- As somas dos postos negativos e positivos foram respectivamente iguais a 36,50 e 54,50. O Z_{teste} calculado foi igual a –0,636. Assim, aceitase H₀. Não é possível supor uma diferença significativa no resultado.
- 8. As somas dos postos negativos e positivos foram respectivamente iguais a 14 e 91. Z_{teste} foi igual a 2,456. É possível rejeitar H₀ e aceitar H₁. Existe uma diferença significativa na média populacional do segundo grupo em relação ao primeiro. Supõe-se que o uso de recursos auxiliares melhorou, de fato, a *performance* dos alunos.

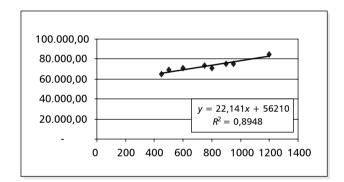
Teste de Mann-Whitney

9. A amostra do matutino revelou n igual a 9 e uma soma dos postos igual a 85. A amostra do noturno revelou n igual a 10 e soma dos postos igual a 105. A estatística u de Mann-Whitney foi igual a 40 e o valor de Z_{cal} igual a 0,425. Assim, não é possível supor que a média populacional dos alunos do noturno seja maior que a do matutino.

Teste da Mediana

10. H_1 : Mediana_{Sul} \neq Mediana_{Norte}, $c_c^2 = 2,71$, $c_t^2 = 0,5788$. Aceita-se H_0 . Não é possível supor que as populações tenham medianas diferentes.

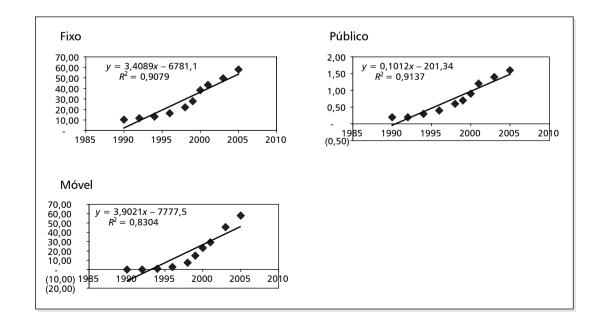
Teste de Kruskal-Wallis

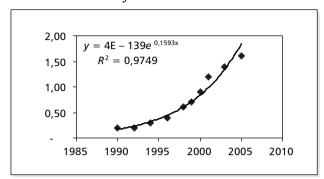

11. As somas dos postos das regiões Norte, Sul, Leste e Oeste são respectivamente iguais a 65,5, 37, 49,5 e 101. A estatística crítica é c_c^2

= 7,81. A estatística teste H é igual a 2,266. Aceita-se H_0 . É possível supor que as médias populacionais sejam iguais.

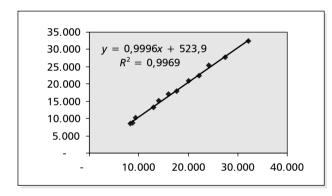
Caítulo 12

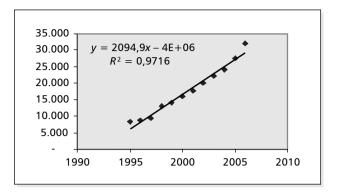
- 1. (a) y = 0.8933x + 2.72; (b) $r^2 = 0.7211$, como o valor está próximo de 1, tem-se uma boa qualidade de ajuste; (c) 8.08.
- 2. (a) y = -0.4778x + 56.472; (b) $r^2 = 0.9291$, alta qualidade de ajuste.
- 3. (a) y = 1,6537x + 30,097; (b) r = 0,9269; (c) 87,9762; (d) 35,4318
- 4. y = -0.0085x + 72.901, $r^2 = 2E-05$. Como o coeficiente de determinação é aproximadamente igual a zero, pode-se dizer que não existe associação entre as variáveis.
- 5. y = 67x + 274, $r^2 = 0,9909$. Para ano 3, faturamento no modelo linear igual a 475.
- 6. (a) y = 5,5146 + 0,4946x; (b) $r^2 = 0,9997$ (alto, bom ajuste).
- 7. y = 67,238x 196,38, $r^2 = 0,927$. (a) 247,3928; (b) é o próprio valor de r^2 , 92,7%.
- 8. (a) Modelo para veículos 0 Km: y = -21,4286x + 2306,4286 (R² = 0,1468); modelo para veículos usados: y = 4,3214x + 94,9286 (R² = 0,5547); (b) previsão para veículos 0 Km: 2.113,5714, 2.092,1429, 2.070,7143 e 2.049,2857; previsão para veículos usados: 9.228,5765, 9.135,9745, 9.043,3724 e 8.950,7704.
- 9. (a) y = 10,7143x + 439,2857 (R² = 0,9454);
 (b) os valores previstos para os três próximos meses são: 525,0000, 535,7143 e 546,4286.
- 10. (a) y = 2,8000x + 40,4727; (b) $R^2 = 0,8853$; (c) 74,0727 e 76,8727.
- 11. y (carros produzidos) = 17.6 + 3.4x (minutos descansados) $r^2 = 0.9263$.
- 12. Pode-se dizer que sim, já que o valor de r² foi consideravelmente alto.
- 13. $y = 5,1214 + 1,3350x r^2 = 0,9922$.
- 14. $y = 46,2606 0,0042x r^2 = 0,0037$. Em função do baixo valor de r^2 encontrado, pode-se dizer que não existe relação linear entre as variáveis.
- 15. y = -60,462 + 3,3077x; $r^2 = 0,9059$.
- 16. Os consumos previstos para os veículos no modelo de ajuste linear foram iguais a 38,77; 55,31 e 61,92. Logo, o veículo B deveria ser mais utilizado em função de apresentar um consumo real inferior ao previsto.


- 17. v = 3.2927 + 3.2412x; $r^2 = 0.9662$.
- 18. y = 13,1539 + 0,4231x; $r^2 = 0,0568$.
- 19. $y = 360,7031 + 0,6016x; r^2 = 0,0335.$
- 20. (a) y = 20,5716 + 0,4582.x; (b) r = 0,982649303; r²= 0,965599652; (c) o percentual é igual a r²; (d) erro padrão = 2,2765; (e) Para vendas iguais a \$ 300,00, custos iguais a \$ 158,0175. Para vendas iguais a \$ 650,00, custos iguais a \$ 318,3710; (f) Para custos iguais a \$ 220,00, vendas iguais a \$ 426,0242.
- 21. (a) com base no valor do coeficiente de correlação r (0,983998968, alto, próximo de 1), é possível supor que exista um crescimento linear do consumo; (b) a equação seria do tipo: y = 62,0357 + 3,6310.x . Para ano igual a 9, consumo previsto igual a 94,7143; para ano igual a 10, consumo previsto igual a 98,3452; (c) o erro padrão seria igual a 1,7395; (d) r = 0,9840; r² = 0,9683.
- 22. Mediante a aplicação da análise de regressão e correlação, nota-se um ajuste linear muito bom entre o tamanho da loja e suas vendas. O r² encontrado foi igual 0,8948; valor, portanto, alto.


A aplicação dos dados na reta de ajuste encontrada (y = 22,141x + 56210) permitiria encontrar os valores previstos, destacados na tabela seguinte. Quando apurada a diferença entre os valores previstos e as vendas reais, nota-se que em três lojas (2, 4 e 6) a diferença foi negativa e expressiva. Assim, a análise de regressão indica que poderiam estar ocorrendo fraudes nestas lojas.

Loja	Tamanho	Vendas	Previsto	Diferença
1	1200	85.000,00	82.779,74	2.220,26
2	800	71.000,00	73.923,17	(2.923,17)
3	600	71.000,00	69.494,88	1.505,12
4	450	65.000,00	66.173,67	(1.173,67)
5	900	75.500,00	76.137,31	(637,31)
6	950	75.600,00	77.244,39	(1.644,39)
7	750	73.250,00	72.816,10	433,90
8	500	69.500,00	67.280,74	2.219,26


- 23. Linear: y = 714,64x 1124,3; $R^2 = 0,9256$; Potência: $y = 88,927x^{1,973}$; $R^2 = 0,9941$. Logo, o ajuste com base em um modelo de potência é melhor.
- 24. $y = 0.0052.x^{2.9955}$; $R^2 = aproximadamente 1$.
- 25. (a)


- (b) aparentemente, segundo os diagramas de dispersão construídos, a premissa de aleatoriedade dos resíduos não foi assegurada.
- (c) conforme exibido pela figura seguinte, o modelo exponencial, aparentemente, fornece um melhor ajuste.

26. (a) Alcool *versus* gasolina: $y = 0,9996x + 523,9, r^2 = 0,9969.$

(b) Ano *versus* álcool: $y = 2094,9x - 4E + 06, r^2 = 0,9716$.

Capítulo 13

- 1. 1,05 ou 105%.
- 2. 1.33 ou 133%.
- 3. 1,425 ou 142,500%.
- 4. 2,0 ou 200%.
- 5. 33.3%.
- 6. (a) 100%, 101%, 99%, 105,1%; (b) 100%, 105%, 109%, 89%.
- 7. 150%, 100%, 120% e 80%.

8.	Laspeyres		Paasche			Fischer			
	1997	1998	1999	1997	1998	1999	1997	1998	1999
Preços	100	142	103	100	104	100	100	121	101
Quantidade	100	184	180	100	184	175	100	184	177

9. (a) 169%; (b) 269%; (c) 213%; (d) 171%; (e) 123%.

10.

Índice	1995	1996	1997	1998
Laspeyres				
Preço	100%	138%	113%	263%
Quantidade	100%	125%	206%	338%
Valor	100%	213%	263%	850%

Paasche				
Preço	100%	170%	127%	252%
Quantidade	100%	155%	233%	324%
Valor	100%	213%	263%	850%
Fischer				
Preço	100%	153%	120%	257%
Quantidade	100%	139%	219%	331%
Valor	100%	213%	263%	850%

Capítulo 14

Médias móveis simples

- 1. (a) 119,6667; (b) 126,6667.
- 2. (a) 79,6667; (b) 82.
- 3. (a) a previsão **para** os meses é igual a 61,6667, 56,0000, 56,6667 e 64,0000; (b) o desvio médio absoluto é 13,6667; (c) erro quadrático médio igual a 215,5185.
- 4. (a) 253; (b) 246.
- 5. (a) 397; (b) 18; (c) 402.
- 6. (a) 140, 138 e 138,5; (b) os DMAs foram respectivamente iguais a 2,6500, 2,5000 e 1,9444. A previsão com n igual a seis revelouse a melhor.

Médias móveis ponderadas

- 1. (a) 8; (b) 2,3056.
- 2. (a) 5,30; (b) 2,01.

Alisamento exponencial

- 1. 97.
- 2. 123,20.
- 3. (a) 7,3260; (b) 2,0499.
- 4. (a) 220 + 0.25.(210 220) = 217.50; (b) 217.50 + 0.25.(222 217.50) = 218.625.
- 5. 2400 + 0.20.(2500 2400) = 2.420.
- 6. (a)

alfa	1	2	3	4	5	6	7	8	9
0,2	150	150	151,8	153,4400	156,1520	159,5216	162,6173	167,0938	171,2751
0,3	150	150	152,7	154,8900	158,5230	162,8661	166,5063	172,0544	176,8381

- (b) para valores de alfa iguais a 0,20 e 0,30, os desvios médios absolutos são respectivamente iguais a 13,2969 e 11,1825. A melhor previsão é a que usa alfa igual a 0,30.
- 7. (a) 7,2500; (b) 1,9444; (c) 6,6568; (d) 1,7104; (e) o melhor modelo é que fornece o menor DMA, no caso, o modelo com alisamento exponencial.

Período	1	2	3	4	5	6	7	8	9	10	11	12	13
Previsão (média ponderada)				7,5	6,5	5,25	5,75	6,5	6,75	5,5	5	5,25	7,25
Diferença absoluta (média ponderada)				1,5	3,5	1,75	2,25	0,5	2,75	0,5	1	3,75	
Previsão (alisamento)	7	7	6,4	7,18	6,83	5,68	6,07	6,65	6,46	5,72	5,5	5,65	6,66
Diferença absoluta (alisamento)	0	2	2,6	1,18	3,83	1,32	1,93	0,65	2,46	0,72	0,5	3,35	

8. (a) 4,94; (b) 1,79; (c) o melhor modelo é que o apresente menor DMA, no caso, o modelo de alisamento exponencial.

Previsão	5	5	4,2	5,32	4,8	3,3	4	4,8	4,5	3,5	3,3	3,6	4,94
Abs dif	0	2	2,8	1,32	3,8	1,7	2	0,8	2,5	0,5	0,7	3,4	
Média	1,79												

- 9. (a) 103,25; (b) 101; (c) 100,7024.
- 10. (a), (b) e (c).

Previsão	1	2	3	4	5	6	7	8	9	10	11
Média móvel simples				112,00	113,00	114,00	115,67	117,00	116,33	116,67	113,00
Média móvel ponderada				110,50	116,60	113,40	114,70	120,80	113,90	115,10	114,30
Suavização exponencial	118,00	118,00	114,15	113,05	115,83	113,79	114,56	118,22	114,64	115,47	114,95

(d) os desvios médios absolutos são respectivamente iguais a 18,58, 20,16 e 15,42. Assim, o melhor modelo é o de suavização exponencial.

Modelos de regressão

1. 664,6667.

Sazonalidade

1. (a) as demandas dessazonalizadas são iguais a 10.400 e 9.600; (b) embora as vendas em janeiro tenham sido maiores em termos sazonalizados, ao dessazonalizar a demanda, percebe-se uma queda da tendência em janeiro.

2.	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4					
a) Índices									
Aditiva	28	2	- 25	– 5					
Multiplicativa	1,28	1,02	0,75	0,95					
b) Previsão	b) Previsão								
Aditiva	138	112	85	105					
Multiplicativa	140,8	112,2	82,5	104,5					

3. Sazonalidade	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
a) Aditiva	_ 138,3333	88,3333	181,6667	_ 131,6667
b) Multiplicativa	0,8092	1,1218	1,2506	0,8184

- 4. (a) y = 0,7107x + 5,3143; (b) para os três quadrimestres, os índices são respectivamente iguais a 0,8740, 0,9448 e 1,1898; (c) 16,6857, 17,3964 e 18,1071; (d) 14,5836, 16,4367 e 21,5434.
- 5. (a) y = 7,4857 + 0,7143x ($R^2 = 0,6726$); (b) 0,9025; 0,9379 e 1,1664; (c) 18,9143; 19,6286; 20,3429; (d) 17,0703; 18,4100 e 23,7273.
- (a) o modelo linear é y = 1,9545x + 6,7121;
 (b) os índices de sazonalidade são iguais a: 1,0942; 1,0749; 0,9211 e 0,9059; (c) as previsões estão apresentadas a seguir.

Trimestre	Média	IS	Previsto
13	32,1212	1,0942	35,1459
14	34,0758	1,0749	36,6285
15	36,0303	0,9211	33,1885
16	37,9848	0,9059	34,4114

Outros livros de Adriano Leal Bruni

O autor possui outros livros publicados pela Editora Atlas. Para saber mais sobre os livros, visite www.EditoraAtlas.com.br ou www.infinitaweb.com.br.

SÉRIE DESVENDANDO AS FINANÇAS

Os livros da série abordam da forma mais clara e didática possível os principais conceitos associados às finanças empresariais. Os volumes contêm grande diversidade de exemplos, exercícios e estudos de casos, integralmente resolvidos. Outros recursos importantes dos textos consistem em aplicações na calculadora HP12C e na planilha eletrônica Excel.

A ADMINISTRAÇÃO DE CUSTOS, PREÇOS E LUCROS

Apresenta os principais conceitos associados ao processo de registro e apuração de custos e formação de

preços, enfatizando os aspectos gerenciais, relativos à tomada de decisão sobre custos e preços. Fornece uma ampla visão da contabilidade financeira dos custos, explorando com maior profundidade a contabilidade gerencial dos lucros e ganhos. Discute os efeitos dos impostos sobre custos, preços e lucros. Por fim, estabelece a relação do preço com o marketing e a estratégia do negócio. Para facilitar a aplicação dos conteúdos, apresenta inúmeros exemplos com o auxílio da calculadora HP12C e da planilha eletrônica Microsoft Excel.

Capítulos: 1. Os custos, a contabilidade e as finanças; 2. Os custos e a contabilidade financeira; 3. Os custos e a contabilidade gerencial; 4. Os custos e seus componentes; 5. Os custos e a margem de contribuição; 6. Tributos, custos e preços; 7. Os custos, os preços e os lucros; 8. Os preços, o marketing e a estratégia; 9. O modelo Custofacil.xls.

A CONTABILIDADE EMPRESARIAL

Ilustra os conceitos associados à Contabilidade, seus principais demonstrativos e informações relevantes no processo de tomada de decisões. Fornece uma visão geral nos números registrados pela Contabilidade e suas relações com o processo de Administração Financeira. Em capítulos específicos, discute o Balanço Patrimonial e a Demonstração de Resultado do Exercício. Traz uma grande variedade de exemplos e exercícios, com muitas questões objetivas. No último capítulo, ilustra alguns usos e aplicações da Contabilidade na planilha eletrônica Microsoft Excel.

Capítulos: 1. Conceitos; 2. O Balanço Patrimonial, 3. A Demonstração do Resultado do Exercício; 4. Outros Demonstrativos Contábeis; 5. Contas, Livros e Registros; 6. Operações com Mercadorias; 7. O Modelo CONTAFACIL.XLS.

AS DECISÕES DE INVESTIMENTOS

Apresenta e discute os conceitos básicos associados ao processo de avaliação de investimentos em Finanças.

Começa com a definição do problema de tomada de decisões em Finanças, e avança pela construção do fluxo de caixa livre e da estimativa do custo médio ponderado de capital. Mostra as principais técnicas de avaliação disponíveis, incluindo payback, valor presente, futuro e uniforme líquido, e as taxas interna e externa de retorno, e a taxa interna de juros. Para facilitar a leitura e o processo de aprendizagem, diversos exercícios apresentam solução completa na HP12C. Muitos exercícios também apresentam resolução com o apoio da planilha eletrônica Microsoft Excel. O final do livro traz o software Investfacil.xls, que simplifica as operações com o auxílio da planilha eletrônica Microsoft Excel.

Capítulos: 1. Conceitos iniciais, HP12C, Excel e o modelo Investfacil.xls; 2. A estimativa dos fluxos futuros; 3. Custo de capital; 4. O processo de avaliação e análise dos prazos de recuperação do capital investido; 5. A análise de valores; 6. A análise de taxas; 7. A seleção de projetos de investimento; 8. O modelo Investfacil.xls.

A MATEMÁTICA DAS FINANÇAS

nilha Matemagica.xls.

Apresenta de forma simples e clara os principais conceitos da Matemática Financeira. Inicia com a definição dos diagramas de fluxo de caixa e avança pelos regimes de capitalização simples e composta. Discute, com muitos exemplos, as séries uniformes e não uniformes e os sistemas de amortização. Para tornar o aprendizado mais fácil, explica o uso da calculadora HP12C, mostrando quase todos os exercícios solucionados com seu auxílio. Também aborda o uso da planilha eletrônica Microsoft Excel em Matemática Financeira, apresentado o software Matemagica.xls - que torna ainda mais simples as operações algébricas em finanças.

Capítulos: 1. Conceitos iniciais e diagramas de fluxo de caixa; 2. A HP12C e o Excel; 3. Juros simples; 4. Desconto comercial e bancário; 5. Juros compostos; 6. Taxas nominais e unificadas; 7. Anuidades ou séries; 8. Sistemas de amortização; 9. Séries não uniformes; 10. A pla-

SÉRIE FINANÇAS NA PRÁTICA

Oferece uma idéia geral das Finanças, desmistificando as eventuais dificuldades da área. Aborda de forma prática, com muitos exemplos e exercícios, as principais tarefas associadas às Financas.

Gestão de Custos e Formação de Preços

Fornece ao leitor elementos de gestão de custos, com o objetivo de, principalmente, demonstrar como administrá-los. Além de identificar os componentes dos custos empresariais, os sistemas de custeio, o efeito dos

tributos sobre preços e custos, focaliza os aspectos estratégicos que determinam a existência de custos em condições de minimizá-los e obter deles, quando controlados, os melhores benefícios. Dividido em 20 capítulos, inclui 150 exercícios resolvidos, a planilha CUSTOS.XLS e o conjunto de apresentações CUSTOS.PPT. Acompanha o livro um CD com as transparências e planilhas eletrônicas.

Capítulos: 1. Introdução à gestão de custos; 2. Material direto; 3. Mão-de-obra direta; 4. Custos indiretos de fabricação; 5. Custeio por departamentos; 6. Custeio por processos; 7. Custeio por ordens de produção; 8. Custeio-padrão; 9. Custeio baseado em atividades; 10. Custos da produção conjunta; 11. Custeio variável; 12. Custos para decisão; 13. Efeito dos tributos sobre custos e preços; 14. Formação de preços: aspectos quantitativos; 15. Formação de preços: aspectos qualitativos; 16. Custos e estratégia; 17. Métodos quantitativos aplicados a custos; 18. Aplicações da calculadora HP

12c; 19. Aplicações do Excel: usos genéricos; 20. Aplicações do Excel: usos em custos e precos.

Matemática Financeira com HP 12C e Excel

Traz os principais conceitos de Matemática Financeira. Aborda tópicos referentes às operações com juros simples, compostos, descontos, equivalência de capitais e taxas, séries uniformes e não uniformes e sistemas de pagamento. Para facilitar o aprendizado, traz exercícios propostos, todos com respostas e vários com soluções

integrais. Apresenta e discute ainda ferramentas aplicadas à Matemática Financeira, como a calculadora HP12C e a planilha eletrônica Excel. Em relação ao Excel, diversos modelos prontos, com fácil utilização e aplicabilidade prática, estão na planilha MATFIN.XLS, presente no CD que acompanha o livro. Todos os modelos e as instruções para serem utilizados também estão disponíveis no decorrer do texto. Destaca-se também o conjunto de apresentações MATFIN.PPT, igualmente apresentado no CD, elaborado no Microsoft PowerPoint, e que ilustra com recursos audiovisuais alguns dos conceitos abordados no livro. Docentes poderão empregá-lo como material adicional das atividades de classe e estudantes poderão aplicá-lo na revisão dos conteúdos da obra.

Capítulos: 1. Matemática financeira e diagrama de fluxo de caixa; 2. Revisão de matemática elementar; 3. A calculadora HP12C; 4. O Excel e a planilha Matfin.xls; 5.

Juros simples; 6. Juros compostos; 7. Operações com taxas de juros; 8. Séries uniformes; 9. Sistemas de amortização; 10. Séries não uniformes; 11. Capitalização contínua.

OUTROS LIVROS

Mercados Financeiros para a Certificação Profissional ANBID 10

Apresenta uma introdução aos mercados financeiros, adequada às normas apresentadas pela Associação Nacional de Bancos de Investimentos (Anbid) para o seu Exame de Certificação Profissional Anbid-Série 10 (CPA-10), que faz parte do Programa de Certificação Continuada da Anbid e tem como principal objetivo a

> contínua elevação da capacitação técnica dos profissionais alocados em agências bancárias e que têm contato direto com o público na comercialização de produtos de investimento.

Constituído de sete capítulos, o texto apresenta inicialmente os conceitos gerais sobre o tema, como poupar e investir, intermediação e segmentação dos mercados financeiros. Os capítulos seguintes são: sistema financeiro nacional, ética e regulamentação, noções de economia e finanças, princípios de investimento, fundos de investimento, que incluem ações, letras hipotecárias, swaps, certificados de depósito bancário, debêntures, notas promissórias e títulos públicos.

Capítulos: 1. Conceitos gerais; 2. Sistema Financeiro Nacional; 3. Ética e regulamentação; 4. Noções de economia e finanças; 5. Princípios de investimentos; 6. Fundos de investimento; 7. Demais produtos de investimento.